International Journal for Science And Research In Technology (I3SART) volume 1 Issue2-FEBRUARY 2015

Analysis Of Deleted Data In NTFS Filesystem

Mr. Dhruv Prajapati', Mr. Anisetti Anjaneyulu®, Mr. Nirav Patel®

!Digital Forensics Analyst e-SF Labs LTD

®Digital Forensics Analyst e-SF Labs LTD

Abstract - The most common and must process for the Digital
analyst is recovery of deleted data. There are number of
operating system in the market but windows is the most used
operating system now a days so that is also true that NTFS is
the most used Filesystem in current days. This paper is the
methodology of how to recovery hierarchical file structure
data from the NTFS Filesystem with the help of MFT data
entry.

I. INTRODUCTION

In the of Digital Forensics the Deleted data recovery is
the most valuable process of any analysis case. In the current
Digital scenario the disk size is rapidly increases by time by
time and also the usage and data of the any user is increased
and in the most common case user cant simply delete the older
data and then used the disk to store new data and also the most
common anti forensics technique for any hacker or any of the
crime suspect guy is to format the disk or delete any
suspicious data. For the recovery of that data there are lots tool
available in the market. This paper shows the best technique
for how to recover data from NTFS file system and what is the
concept behind it.This paper contains information on MFT file
structure and what type of data MFT file store and how it is
very use full for Forensic analyst to retrieve deleted files.

In the NTFS file system the best thing is analyst can
retrieved the file with the hierarchic structure at what point it
was deleted so that the whole structure of hierarchical can be
retrieved.

In this paper Autopsy tool is used for the analysis. The
NTFS file system maintains an index of all files/directories
that belong to a directory called the $I30 attribute. Every
directory in the file system contains an $130 attribute that must
be maintained whenever there are changes to the
files/directories that belong to it. The $I130 index records are
re-arranged accordingly as soon as files or folders are
removed from the directory. However, re-arranging of the
index records may leave remnants of the deleted file/folder
entry within the slack space. Similar to Master File Table
(MFT) entries in NTFS, index entries within the B-tree are not
completely removed when file deletion occurs. Instead, they
are marked as deleted using a corresponding $BITMAP
attribute. This can be useful in forensics analysis for identifyig

Page | 14

files that may have existed on the drive earlier.

Il. ANALYSISPROCESS

The NTFS file system maintains an index of all
files/directories that belong to a directory called the $I30
attribute. Every directory in the file system contains an $I30
attribute that must be maintained whenever there are changes
to the files/directories that belong to it. The $130 index records
are re-arranged accordingly as soon as files or folders are
removed from the directory. However, re-arranging of the
index records may leave remnants of the deleted file/folder
entry within the slack space. Similar to Master File Table
(MFT) entries in NTFS, index entries within the B-tree are not
completely removed when file deletion occurs. Instead, they
are marked as deleted using a corresponding $BITMAP
attribute. This can be useful in forensics analysis for
identifying files that may have existed on the drive earlier.

NTFS directory index entries utilize a $FILE_NAME
attribute type to store file information within the index. This is
the same attribute employed by the MFT and hence it provides
a treasure trove of information about the file:

e Full filename

e Parent directory (useful if you recover a $I30 file in
free space and do not know its origin)

o Filesize

e Creation Time

e Modification Time

e MFT Change Time

e Access Time

The Sleuth Kit (TSK) does an excellent job with Index
Attributes.

WwWw.ijsart.com

International Journal for Science And Research In Technology (I3SART) volume 1 Issue2-FEBRUARY 2015

m Administrator: Command Prompt = @ “

C \lsers\Admin\DesktopsJoolshsleuthkit-4.1.3-win32\sleuthkit-4.1.3-win32\hin>nn1j
.exe —a —BM “\.\PhysicalDrived

GUID Partition Tahle (EFL)

Offset Sector: B

Units are in 512-hyte sectors

Start End Length Size

0BRAER2G48 MAE2ASAR47 ABR2G48GAR 1AGBM
0pR265A048 BAA2582527 ABMAS32488 @268M
0BR2582528 BAG2844671 ABRA262144 @128M
0aR2844672 1932834815 1929999144 @928
1932834816 1993523711 0O206888%6 @BGIG

C:\Users\Admin\Desktop\Toolshsleuthkit-4.1.3-win32\s leuthkit-4.1.3-uwin32\hin>_

Description
EFI system partition|

Microsoft reserved j|

Basic data partition|

Fig.1 mmls (Sleuthkit)

mmls: Displays the layout of a disk, including the unallocated
spaces.

-a denotes Show Allocated Volumes
-B denotes print the rounded length in bytes
-M denotes Hide Metadata volumes

\.\PhysicalDrive0O is a disk which is evaluated here to get
volume details

In fig 1, take slot #03 into account as the Index attribute of
a directory we wanted to analyze is of slot #03 and 2844672 is
the start sector of selected slot which is basic data partition.

Now select a partition from which we want to find MFT
Entry of a file.

Fig.2 fls (Sleuthkit)

fls : Lists allocated and deleted file names in a directory.
-r denotes recurse on directory entries
-p denotes Display full path for each file

-0 denotes imgoffset means Offset into image file (in sectors)

Page | 15

\\.\PhysicalDrive0 is a disk which is evaluated here to get
volume details

findstr filename means it searches for given filename starting
from given -o imgoffset

r/r denates file entry in $MFT file
LICENSE is a file located at MFT entry 151324-128-3 in

SMFT file which is under the system at path
“Prey/LICENSE”.
] Administrator: Command Prompt -oEN

C:\Users\AdminsDesktopsToolshsleuthkit—4.1.3-wind2\sleuthkit—4.1.3-win32\bin>ist |
at.exe —o 2844672 “_\PhysicalDrive® 151324

MET_Fotwy Headep Ualues:

Entry: 151324 Sequence: 5

bLogllle Sequence Number: 6878941522

SSTANDARD_INFORMATION Attribute Ualues:

Flags: Archive

Ouner ID: @

Becurity ID: 2756 (§-1-5-32-544)

Last User Journal Update Sequence Mumher: 1542723584
Created: 2014-85-01 82:39:52 (India Standard Time)
File Modified: 2@14-85-81 @2:39:52 {India Standard Time)
MPT Modified: 2@14-18-@7 15:4@:33 {India Standard Time)
Accessed: 2014-16-87 15:48:21 (India Standard Time)

SFILE_NAME Attribute Ualues:

Flags: Archive

Name: LICENSE

Parent MFT Entry 151323 Sequence]
Actual Size:

2l14 16-@7 15 u (lnd1a Standard Time)

d: 2014-10-87 15 21 (India Standard Time)

2014-10-@7 15:48:21 (India Standard Time)

Accessed: 2014-16-87 15:48:21 (India Standard Time)

Attributes:

Type: SSTANDARD_INFORMATION (168> Mame: N/ Resident

Type SFILE_| NHHE (48-2) Name N/ﬂ Resident size: Eﬂ

pe: SDATA (128-3) Name: Non-Resident size: 35147 init_size: 35147
%ggggig 2295336 2295337 2295338 2295339 2295348 2295341 2295342

size: 72

C:\Users\AdminsDesktopsToolshsleuthkit-4.1.3-wind2\sleuthkit-4.1.3-wind2\hin>_

Fig.3 istat (Sleuthkit)

istat : Displays the statistics and details about a given metadata
structure in an easy to read format.

Here istat command displays details about given
filename at MFT Entry 151324 in $MFT file and also displays
parent MFT entry which is 151323.

Figure 4 shows output from the TSK istat tool for a
“Prey” directory. Near the bottom of the output we see the
NTFS attribute list.

istat command displays 0x10 (STANDARD_INFORMATION
ATTRIBUTE), 0x30

(FILE_NAME ATTRIBUTE),
ATTRIBUTE) values for given MFT

0x40 (OBJECT_ID

Entry.

WwWw.ijsart.com

International Journal for Science And Research In Technology (I3SART) volume 1 Issue2-FEBRUARY 2015

1 - |

C:\UsersyAdninsDesktoprToolsssleuthkit-4.1.3-win32\sleuthkit—4.1.3-win32\hin>ist
lat .exe —o 2844672 \\.\PhysicalDriveB 151323

MFT Entry Header Ualues:

Entry: 151323 Sequenc:

%LogFile Sequence Numbe) 86745?8864

Allocated Directory

Links: 1

EY Administrator: Command Prompt

$STRNDRRD INFORMATION Attribute Values:

Sec 1ty ID: 787 (8-1-5-32-544)
r Journal Update Sequence Number: 1957746328
2014-18-87 15:4@:21 (India Standard Time)
= 2814-11-2@ 12:38:50 (India $tandard Time)
2014-11-2@ 12:38:50 (India Standard Time)
2014-11-2@ 12:38:50 (India Standard Time)

SFILE_NAME Attpibute llalues:

MFT Modified:
Accessed:

: Prey
[FRFENT AF 1 nnny 5
Allocated Size: tal Size:
Created: 2814 18- B'? 15 40:21 (India Standard Time)
File Modified: 2014-18-87 15:48:21 (India Standard Time)
MFT Modified: 2@14-10-@7 15:4@8:21 (India Standard Time)
2014-18-87 15:40:21 (India Standard Time)

SOBJECT_ID Attribute Ualues:
Object [d: d5118466-6c68-3ehf-11e4-707dadhc?7d4d

bequence 5

nttr 1hllte.,:
5STRNDRRD INFOHNRTION (16 B)
: $FILE_NAME Nani
: SOBJECT_ID (64 E) Name N/H Re dent
.: STMDEX_ROOT _(144-5> HName: 5124 Besident i
'4%&EDE)LHLLOCRTION €168-3> HName: $I38 MNon-Res

Name : N-A

Type SBITHMAP <176-4> Mame: $I3@ Resident size: 8

C:“\Users \Admin\Desktop\Tools\sleuthkit-4.1_3-win32\sleuthkit—4.1_3-win32\hin>

Fig.4 istat (Sleuthkit)

istat command displays $INDEX_ALLOCATION of a
directory which is (160-3) for given MFT Entry.

To export the $130 attribute from this directory, we use
the icat tool from TSK and give it the MFT entry number of
the directory along with the identifier for the
SINDEX_ALLOCATION attribute, which in this case is "160-
3". This output is redirected into a file named, $130 which
contains file metadata such as physical size, logical size,
modified time, accessed time, changed time, created time etc.

=

i Administrator, Command Prompt
t.exe -0 2844672 \\.\PhysicalDrived 151323-168-3 > 51361

C:\Users\idnin\DesktophToolshsleuthkit-4.1.3-uin32\s leuthkit-4.1.3-wind2\hin}ica
toexe -0 2844672 \\.\Physicallrived 151323-168-3 > 5130

C:\UsersMidnin\Desktop\Toolshs leuthkit-4.1.3-win32\s leuthkit-4.1.3-wind2\bin>

Fig.5 icat (Sleuthkit)

Now we need to parse this INDEX file into easy readable
format hence INDXParse.py script is used to convert it into
csv format.

2 Administrator: Command Prompt - olEl

Microsoft Windows [Uersion 6.2.92001
(c) 2012 Microsoft Corporation. All rights reserved.

C:\windowshsystend2ded Ca\Python2?

C:\Python27>python INDKParse.py $13@ > $130_Output.csv

C:\Python27>

Fig.6 INDXParse.py

Page | 16

In above figure 6, INDXParse.py is a python file used to
convert $130 into csv format.

The resulting file can be opened and filtered in Excel. File
names, file size, and four timestamps are displayed in the
output shown in below figure 7.

S Spreadsheets -

Hme st Paplaod Fomis Db TSk Reiew Ven

FILENAME

3 & D E F G
1 k\fE [PHYSICAL SIZE LDG[E-\L SEE"ODIID TIME ACCESSEDTIME CHANGED TIME
1 omig Sll 45 2014 32 20141 326,857 71
3 omigdefik 8192 4
4 CONFIG-1DEF 819 4
) oore 0 0
6 lmg 0 0
T b 0 0
§ LICENSE o864 BT
9 modiles 0 0
10 pixmaps 0 0 b
11 platiorm 0 0 01021823711
12 preylog 409 X
13 preysh 3192
14 README 3192
15 version 16 16
1

Fig.7 $130 into csv format

I1l. CONCLUSION

This technique is useful to make a proper data recovery tool. It
is a method of complete data recovery process of NTFS file
with the proper file name. In all other data recovery techniques
file will recover in not a folder wise.

REFERENCES

[1] File System Forensic Analysis, Brian Carrier

[2]INDXParser.py by Willi Ballenthin

[3]http://digital-forensics.sans.org/blog/2011/09/20/ntfs-i30-
index-attributes-evidence-of-deleted-and-overwritten-files

[4]http://www. osforensics.com/fags-and-tutorials/how-to-
scan-ntfs-i30-entries-deleted-files.html

[5]https://www.mandiant.com/blog/striking-gold-incident-
response-ntfs-indx-buffers-part-1-extracting-indx/

WwWw.ijsart.com

http://www.digital-evidence.org/fsfa/
http://www.digital-evidence.org/fsfa/
http://www.williballenthin.com/forensics/indx/index.html
http://www.williballenthin.com/forensics/indx/index.html
http://digital-forensics.sans.org/blog/2011/09/20/ntfs-i30-index-attributes-evidence-of-deleted-and-overwritten-files
http://digital-forensics.sans.org/blog/2011/09/20/ntfs-i30-index-attributes-evidence-of-deleted-and-overwritten-files
http://digital-forensics.sans.org/blog/2011/09/20/ntfs-i30-index-attributes-evidence-of-deleted-and-overwritten-files
http://digital-forensics.sans.org/blog/2011/09/20/ntfs-i30-index-attributes-evidence-of-deleted-and-overwritten-files
http://www.osforensics.com/faqs-and-tutorials/how-to-scan-ntfs-i30-entries-deleted-files.html
http://www.osforensics.com/faqs-and-tutorials/how-to-scan-ntfs-i30-entries-deleted-files.html
http://www.osforensics.com/faqs-and-tutorials/how-to-scan-ntfs-i30-entries-deleted-files.html
http://www.osforensics.com/faqs-and-tutorials/how-to-scan-ntfs-i30-entries-deleted-files.html
https://www.mandiant.com/blog/striking-gold-incident-response-ntfs-indx-buffers-part-1-extracting-indx/
https://www.mandiant.com/blog/striking-gold-incident-response-ntfs-indx-buffers-part-1-extracting-indx/
https://www.mandiant.com/blog/striking-gold-incident-response-ntfs-indx-buffers-part-1-extracting-indx/
https://www.mandiant.com/blog/striking-gold-incident-response-ntfs-indx-buffers-part-1-extracting-indx/

