
International Journal for Science And Research In Technology (IJSART) volume 1 Issue2–FEBRUARY 2015

Page | 14 www.ijsart.com

Analysis Of Deleted Data In NTFS Filesystem

Mr. Dhruv Prajapati
1
, Mr. Anisetti Anjaneyulu

2
, Mr. Nirav Patel

3

1Digital Forensics Analyst e-SF Labs LTD

3Digital Forensics Analyst e-SF Labs LTD

Abstract - The most common and must process for the Digital

analyst is recovery of deleted data. There are number of

operating system in the market but windows is the most used

operating system now a days so that is also true that NTFS is

the most used Filesystem in current days. This paper is the

methodology of how to recovery hierarchical file structure

data from the NTFS Filesystem with the help of MFT data

entry.

I. INTRODUCTION

In the of Digital Forensics the Deleted data recovery is

the most valuable process of any analysis case. In the current

Digital scenario the disk size is rapidly increases by time by

time and also the usage and data of the any user is increased

and in the most common case user cant simply delete the older

data and then used the disk to store new data and also the most

common anti forensics technique for any hacker or any of the

crime suspect guy is to format the disk or delete any

suspicious data. For the recovery of that data there are lots tool

available in the market. This paper shows the best technique

for how to recover data from NTFS file system and what is the

concept behind it.This paper contains information on MFT file

structure and what type of data MFT file store and how it is

very use full for Forensic analyst to retrieve deleted files.

In the NTFS file system the best thing is analyst can

retrieved the file with the hierarchic structure at what point it

was deleted so that the whole structure of hierarchical can be

retrieved.

In this paper Autopsy tool is used for the analysis. The

NTFS file system maintains an index of all files/directories

that belong to a directory called the $I30 attribute. Every

directory in the file system contains an $I30 attribute that must

be maintained whenever there are changes to the

files/directories that belong to it. The $I30 index records are

re-arranged accordingly as soon as files or folders are

removed from the directory. However, re-arranging of the

index records may leave remnants of the deleted file/folder

entry within the slack space. Similar to Master File Table

(MFT) entries in NTFS, index entries within the B-tree are not

completely removed when file deletion occurs. Instead, they

are marked as deleted using a corresponding $BITMAP

attribute. This can be useful in forensics analysis for identifyig

files that may have existed on the drive earlier.

II. ANALYSIS PROCESS

The NTFS file system maintains an index of all

files/directories that belong to a directory called the $I30

attribute. Every directory in the file system contains an $I30

attribute that must be maintained whenever there are changes

to the files/directories that belong to it. The $I30 index records

are re-arranged accordingly as soon as files or folders are

removed from the directory. However, re-arranging of the

index records may leave remnants of the deleted file/folder

entry within the slack space. Similar to Master File Table

(MFT) entries in NTFS, index entries within the B-tree are not

completely removed when file deletion occurs. Instead, they

are marked as deleted using a corresponding $BITMAP

attribute. This can be useful in forensics analysis for

identifying files that may have existed on the drive earlier.

NTFS directory index entries utilize a $FILE_NAME

attribute type to store file information within the index. This is

the same attribute employed by the MFT and hence it provides

a treasure trove of information about the file:

 Full filename

 Parent directory (useful if you recover a $I30 file in

free space and do not know its origin)

 File size

 Creation Time

 Modification Time

 MFT Change Time

 Access Time

The Sleuth Kit (TSK) does an excellent job with Index

Attributes.

International Journal for Science And Research In Technology (IJSART) volume 1 Issue2–FEBRUARY 2015

Page | 15 www.ijsart.com

Fig.1 mmls (Sleuthkit)

mmls: Displays the layout of a disk, including the unallocated

spaces.

-a denotes Show Allocated Volumes

-B denotes print the rounded length in bytes

-M denotes Hide Metadata volumes

\\.\PhysicalDrive0 is a disk which is evaluated here to get

volume details

In fig 1, take slot #03 into account as the Index attribute of

a directory we wanted to analyze is of slot #03 and 2844672 is

the start sector of selected slot which is basic data partition.

Now select a partition from which we want to find MFT

Entry of a file.

Fig.2 fls (Sleuthkit)

fls : Lists allocated and deleted file names in a directory.

-r denotes recurse on directory entries

-p denotes Display full path for each file

-o denotes imgoffset means Offset into image file (in sectors)

\\.\PhysicalDrive0 is a disk which is evaluated here to get

volume details

findstr filename means it searches for given filename starting

from given -o imgoffset

r/r denotes file entry in $MFT file

LICENSE is a file located at MFT entry 151324-128-3 in

$MFT file which is under the system at path

“Prey/LICENSE”.

Fig.3 istat (Sleuthkit)

istat : Displays the statistics and details about a given metadata

structure in an easy to read format.

Here istat command displays details about given

filename at MFT Entry 151324 in $MFT file and also displays

parent MFT entry which is 151323.

Figure 4 shows output from the TSK istat tool for a

“Prey” directory. Near the bottom of the output we see the

NTFS attribute list.

istat command displays 0x10 (STANDARD_INFORMATION

ATTRIBUTE), 0x30

(FILE_NAME ATTRIBUTE), 0x40 (OBJECT_ID

ATTRIBUTE) values for given MFT

Entry.

International Journal for Science And Research In Technology (IJSART) volume 1 Issue2–FEBRUARY 2015

Page | 16 www.ijsart.com

Fig.4 istat (Sleuthkit)

istat command displays $INDEX_ALLOCATION of a

directory which is (160-3) for given MFT Entry.

To export the $I30 attribute from this directory, we use

the icat tool from TSK and give it the MFT entry number of

the directory along with the identifier for the

$INDEX_ALLOCATION attribute, which in this case is "160-

3". This output is redirected into a file named, $I30 which

contains file metadata such as physical size, logical size,

modified time, accessed time, changed time, created time etc.

Fig.5 icat (Sleuthkit)

Now we need to parse this INDEX file into easy readable

format hence INDXParse.py script is used to convert it into

csv format.

Fig.6 INDXParse.py

In above figure 6, INDXParse.py is a python file used to

convert $I30 into csv format.

The resulting file can be opened and filtered in Excel. File

names, file size, and four timestamps are displayed in the

output shown in below figure 7.

Fig.7 $I30 into csv format

III. CONCLUSION

This technique is useful to make a proper data recovery tool. It

is a method of complete data recovery process of NTFS file

with the proper file name. In all other data recovery techniques

file will recover in not a folder wise.

REFERENCES

[1] File System Forensic Analysis, Brian Carrier

[2]INDXParser.py by Willi Ballenthin

[3]http://digital-forensics.sans.org/blog/2011/09/20/ntfs-i30-

index-attributes-evidence-of-deleted-and-overwritten-files

[4]http://www.osforensics.com/faqs-and-tutorials/how-to-

scan-ntfs-i30-entries-deleted-files.html

[5]https://www.mandiant.com/blog/striking-gold-incident-

response-ntfs-indx-buffers-part-1-extracting-indx/

http://www.digital-evidence.org/fsfa/
http://www.digital-evidence.org/fsfa/
http://www.williballenthin.com/forensics/indx/index.html
http://www.williballenthin.com/forensics/indx/index.html
http://digital-forensics.sans.org/blog/2011/09/20/ntfs-i30-index-attributes-evidence-of-deleted-and-overwritten-files
http://digital-forensics.sans.org/blog/2011/09/20/ntfs-i30-index-attributes-evidence-of-deleted-and-overwritten-files
http://digital-forensics.sans.org/blog/2011/09/20/ntfs-i30-index-attributes-evidence-of-deleted-and-overwritten-files
http://digital-forensics.sans.org/blog/2011/09/20/ntfs-i30-index-attributes-evidence-of-deleted-and-overwritten-files
http://www.osforensics.com/faqs-and-tutorials/how-to-scan-ntfs-i30-entries-deleted-files.html
http://www.osforensics.com/faqs-and-tutorials/how-to-scan-ntfs-i30-entries-deleted-files.html
http://www.osforensics.com/faqs-and-tutorials/how-to-scan-ntfs-i30-entries-deleted-files.html
http://www.osforensics.com/faqs-and-tutorials/how-to-scan-ntfs-i30-entries-deleted-files.html
https://www.mandiant.com/blog/striking-gold-incident-response-ntfs-indx-buffers-part-1-extracting-indx/
https://www.mandiant.com/blog/striking-gold-incident-response-ntfs-indx-buffers-part-1-extracting-indx/
https://www.mandiant.com/blog/striking-gold-incident-response-ntfs-indx-buffers-part-1-extracting-indx/
https://www.mandiant.com/blog/striking-gold-incident-response-ntfs-indx-buffers-part-1-extracting-indx/

