
International Journal for Science And Research In Technology (IJSART) volume 1 Issue 1–JANUARY 2015

Page | 21 www.ijsart.com

Active Learning of Various Sorting Algorithm

 Nirav Patel
1
, Vaishali Patel

2

1Computer Engineering, Alpha College of Engineering & Technology

2Computer Engineering, Universal College of Engineering & Technology

Abstract- Sorting algorithm are widely used for arranging objects

in some order like ascending order or descending order. In this

paper various types of sorting algorithm will be explained with

respect to their time and space complexity. Sorting is ordering a

list of objects.

 Index Terms- Sorting Algorithm, Quick Sort, Heap Sort, Merge

sort, Selection sort, Bubble sort, Insertion sort

I. INTRODUCTION

A sorting problem has attracted a great interest of

research due to the complexity of solving it efficiently[3].

Efficient sorting is very important for optimizing the use of other

algorithms which needed input data to be in sorted lists. We can

classify sorting techniques in two different classes. If the number

of substance is sufficient to fits into the main memory, then this

type of sorting is called internal sorting. If the number of items is

so large that some of them reside on external storage during the

sorting process, it is known as external sorting.

Each sorting algorithm is better in some situation and has its own

merits and demerits. Likewise the insertion sort is preferable to the

quick sort for small files and for almost-sorted files [1].

There are various types of sorting algorithms. Some of them are

enlisted as follows:

(1) Quick sort

(2) Merge sort

(3) Selection sort

(4) Bubble sort

(5) Insertion sort

(6) Heap sort

II. SORTING ALGORITHM AND TIME COMPLEXITY

 Quick sort:

The steps are:

1. Pick an element from all of the array elements. This

element is known as pivot

2. partition operation: Rearrange the array so that all

elements with values less than the pivot come prior to the

pivot, while all elements with values greater than the

pivot come after it After this partitioning, the pivot is in

its final location.

3. Recursively apply the above two steps to the sub-array of

elements with smaller values and separately to the sub-

array of elements with greater values.

Time complexity:
 Best case : n log(n)

 Average case: n log(n)

 Worst case: n2

 Merge sort:

Merge sort works as follows:

1. Partition the unsorted list into n sub parts, each subpart

contain one element in it.

2. Repeatedly merge sublists to produce new sorted sublists

until there is only 1 sublist remain. This will be the sorted

list.

Time complexity:
 Best case : n log(n)

 Average case: n log(n)

 Worst case: n log(n)

 Selection sort:

This algorithm divides the input list into two parts where each part

is the sublist of items already sorted, which is developed from left

to right at the front (left) of the list, and the sublist of items left

behind to be sorted that occupy the rest of the list.

At the initial stage, the sorted sublist is empty and the unsorted

sublist is the entire input list. The algorithm proceeds by

International Journal for Science And Research In Technology (IJSART) volume 1 Issue 1–JANUARY 2015

Page | 22 www.ijsart.com

discovering the smallest element in the unsorted sublist,

interchanging it with the leftmost unsorted element and moving

the sublist boundaries one element to the right.

Time complexity:
 Best case : n2

 Average case:n2

 Worst case: n2

 Bubble sort:

 Bobble sort is also known as sinking sort. It works by repeatedly

stepping through the list to be sorted, comparing each pair of

nearby items and swapping them if they are in the wrong order[2].

The pass throughout the list is repeated until no swaps are

required, which point to that the list is sorted.

Time complexity
 Best case : n

 Average case: n
2

 Worst case: n2

 Insertion sort:

Insertion sort algorithm consumes one input element for each

iteration and grows a sorted output list. In each iteration, insertion

sort removes one element from the input list, finds the exact

position it belongs within the sorted list, and inserts it there. This

process is repeated until no input elements remain

Time complexity
 Best case : n

 Average case: n2
 Worst case: n2

 Heap sort:

Heap sort can be treated as an improved selection sort. This

algorithm divides its input into a sorted and an unsorted area, and

it repeatedly shrinks the unsorted region by extracting the smallest

element and moving that to the sorted region.

The improvement consists of the use of a heap data structure

rather than a linear-time search to find the minimum.

Time complexity
 Best case : n log(n)

 Average case: n log(n)

 Worst case: n log(n)

 Comparison

Sort n=100 n=1000 n=10000

Bubble

sort

6 49 184

Insertion

sort

8 26 163

Selection

sort

9 37 572

Quick

sort

2 13 43

Table 1: Average case runtime of some sorting techniques for

different size of array.

Sort n=100 n=1000 n=10000

Bubble

sort

8 73 697

Insertion

sort

11 42 227

Selection

sort

12 63 940

Quick sort 4 8 65

Table 2: The worst case runtime of some sorting techniques for

different size of array.

International Journal for Science And Research In Technology (IJSART) volume 1 Issue 1–JANUARY 2015

Page | 23 www.ijsart.com

Fig. 1: Run time in average and worst case for

some sorting techniques Integer (n) =100

Fig.2: Run time in average and worst case for

some sorting techniques Integer (n) =1000

III. CONCLUSION

In this paper we are discuss about sorting algorithms

which are useful to sort the activity or the data in different

manners.

 REFERENCES

[1] Introduction to algorithm,Thomas H. Coreman

[2] htts://www.cs.cmu.edu/~adamchik/15121/lectures/Sortin

g%20Algorithms/sorting.html

[3] http://en.wikipedia.org/wiki/Bubble_sort

[4] http://en.wikipedia.org/wiki/Sorting_algorithm

[5] http://www.eportfolio.lagcc.cuny.edu/scholars/doc_fa09/e

P_fa09/Jariya.%20Phongsai/documents/mac%20286/sorti

ng%20algorithms%20research.pdf

[6] www.ijarcsse.com/docs/papers/Volume_3/11.../V3I10-

0312.pdf

[7] http://www.expertsmind.com/questions/sorting-

algorithm-30133656.aspx

[8] http://www.personal.umich.edu/~rlsmith/Solution

%20and%20Forecast%20Horizons.pdf

