
IJSART - Volume 9 Issue 5 – MAY 2023                                                                                           ISSN [ONLINE]: 2395-1052

Page | 1241 www.ijsart.com

An Overview: Deep Learning For GAIT Recognition
Kandarpa Uday Narasimha Murthy1, Mr. Rishi Kushwaha2

1, 2 School of Engineering
1, 2 SSSUTMS, Sehore, M.P(India)

Abstract- After a quick discussion of the key human gait
metrics, the state-of-the-art in deep learning for human gait
analysis is covered in detail. According to the sensing
technology, the gait data collection methods are divided into
three categories: video sequences, wearable sensors, floor
sensors, and publicly accessible datasets. The performance of
each group's known artificial neural network architectures for
deep learning is reviewed, with special attention paid to the
spatiotemporal nature of gait data and the justification for
multi-sensor, multi-modality fusion. It is demonstrated that
deep learning convolutional neural networks often outperform
shallow learning models by the majority of key measures. This
is attributed to the gait data's stated characteristics.
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I. INTRODUCTION

GAIT refers to the displacement of the center of
gravity during locomotion. In humans, it is achieved through
the synchronized movement of the lower limbs and the trunk,
resulting in a move from one position to the other [1]. Every
human being has a particular behavioural characteristic that is
influenced by mutually exclusive factors including weight,
gender, and age. Gait analysis has a long history, which
documents a gradual growth from descriptive research to more
complex techniques. Aristotle was the first to study animal
and human motion about 350 BC. [2]. However, it was the
works of Newton, Galileo, and Leonardo da Vinci that first
provided useful explanations of how people move. Galileo's
apprentice and the founder of biomechanics, Borelli [3],
supplied a significant boost to scientific gait analysis methods
by determining the human body's center of gravity and how
walkers maintain their balance. [4]. The Weber brothers
defined the gait cycle in 1836 and described gait as a periodic
movement based on the forward leg motion that resembled a
pendulum [5]. In order to demonstrate that all four of the
horse's hooves were off the ground while trotting, Muybridge
utilized 12 cameras to record racehorse motion in 1878. He
also adopted a similar strategy to take a number of images of
people moving [6]. The first substantial quantitative use of
gait analysis was in 1895 [4] when Braune and Fisher used a
photographic technique to determine a human body’s velocity,
acceleration, and dimensional trajectory to estimate the forces

involved during the gait cycle. In 1930s, Bernstein studied the
dynamic locomotion of 150 subjects to determine the center of
gravity of each limb segment of the subjects using a
photographic technique [7].

Ground Reaction Force (GRF) was introduced in
human gait understanding in 1924 when Cavanagh and
Lafortune [8] designed a force plate to measure the magnitude
and the direction of GRF. The platform was improved by
Elftman in 1938 using a high-speed cinematic camera to
capture a pointer movement resulting from the force applied to
the platform [9]. A substantial amount of knowledge was con-
tributed to the human locomotion analysis in the 1950s, with
the motivation to treat World War II veterans [10].

Over the past two decades, the rapid expansion of the
capabilities of sensor systems, including advances in scientific
processing, has allowed us to extract more lavish data from
increasing means of detection. In this context, progress in
evaluating various human locomotion parameters based on the
ever-increasing amount and quality of data is aided by
advances in new gait detection tools. Of course, this also
highlighted the difficulties arising from the requirement to
achieve multi-source and multi-sensor fusion from various big
data. Furthermore, it is unclear whether the complex personas
of gait adequately reflect the simple and widely used indices
that are typically mediated by systems for rapid and robust
diagnosis, recognition, and grouping. . Deep learning models,
on the other hand, emerged as a result of advances in machine
learning technology. These models can provide faster and
more accurate results from databases that continue to grow in
size and scope, and can be applied to complex data with
minimal preprocessing. It offers new possibilities for
detection, fusion and classification from a wide variety of
multi-source and multi-sensor data. Among them, spatio-
temporal parameters of walking are currently attracting
attention because of their potential for various applications
such as walking. health care [11], [12], sport [13], [14], and
identification of individuals for security [15], [16].

Gait analysis is immature and there is no gold
standard for collection or data processing. The rest of this
essay organizes the most commonly used modalities.
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We study human gait based on sensor principles and
the amount and type of sensor data generated into three
groups.

Video Sequences (VS), Wearable Sensors (WS), and
Ground Sensors (FS). We show that the detection principle
used for this grouping also influences the choice of deep
learning processing method.

The VS solution is based on action detection using
spatio-temporal information. WS systems typically include
inertial sensors to detect the velocity, acceleration, and
orientation of the human body during physical human activity.
FS typically monitors GRF induced by contact with the
ground during the gait cycle. Data obtained from these
modalities are analyzed and classified using advanced
supervised learning techniques based on appropriate
assumptions. This review is underpinned by an extensive
literature search but only the most recent works, combining
gait recognition with deep learning algorithms, are presented
in more detail.

II. LITERATURE REVIEW

To define the contribution of deep mastering in
human gait analysis, it is indispensable to apprehend how
people stroll and the functions of gait giving upward jab to the
set of strategies utilized for analysis.

A. Gait Parameters

Gait can be perceived as a transformation of a Genius
undertaking to muscle contraction patterns ensuing in a
walking sequence. It is a chain of instructions generated in the
intelligence and transmit- ted thru the spinal cord to prompt
the decrease neural center, which will hence result in muscle
contraction patterns assisted by using sensory comments from
joints, muscle groups and different receptors to control the
movements. This will end result in the ft often contacting the
floor floor to cross the trunk and lower limbs in a coordinated
way, turning in a alternate in the physique center-of-mass
function.

Gait is a sequence of periodic events characterized as
repetitive cycles for each foot [4]. Each cycle is divided into
two phases (see figure 1):

a) Stance Phase (approximately 60% of the gait cycle,
with the foot in contact with the ground). This phase
is subdivided into four intervals (A, B, C, D).

b) Swing Phase (approximately 40% of the gait cycle
with the foot swinging and not in contact with the

ground). This phase is subdivided into three intervals
(E, F, G).

A. Heel strike or Initial contact: It starts the moment the foot
touches the ground, and it is the initial double-limb
support interval. In the case of the right foot leading, the
double support starts with left foot being on the ground
when the right foot heel makes initial contact and finishes
when the left foot leaves the ground with the left toe-off
prepared to swing. At the end of this interval, the body
weight is completely shifted onto the stance (leading)
limb.

B. Loading response or Foot flat: This is a single support
interval following the double support interval. The trunk
is at its lowest position, the knee is flexed, and a
plantarflexion occurs at the ankle.

C. Mid-stance: This is a single support interval between
opposite toe-off and heel-off. The trunk is in its highest
point

Fig. 1. Important gait events and intervals in a normal gait
cycle.

and slowing its forward speed. The body center-of-mass
is aligned with the forefoot (ball of the foot).

D. Terminal stance or Heel-off: The heel rises in preparation
for opposite swing. The trunk is sinking from its highest
point, the knee has extant peak near the time of heel rise
and ankle has dorsiflexion after heel rise.

E. Pre-swing: This is the second double-limb support
interval. The opposite initial contact occurs, and the hip is
beginning to flex, the knee is flexing, and the ankle is at
plantarflexion. The toe is in last contact before the swing,
finishing the push-off started in interval D.

F. Initial swing and Mid-swing: This interval begins with the
toe-off into single support and starting to swing. The body
weight is shifted to the opposite forefoot. In this instant,
the knee joint gets the maximum flexion. The hip is
flexing and the limb advances in preparation for a stride.

G. Terminal swing: This is the last interval of gait cycle and
the end of the swing phase. The interval begins at
maximum knee flexion and ends with maximum
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extension of the swinging limb forward. The hip
continues flexion and the knee extends in regard to
gravity, the ankle continues dorsiflexion to end neutral,
ready for the heel strike.

With regard to the above gait events, the following
parame- ters of human gait are usually analyzed in clinical
settings [17] for healthcare tasks, using various sensing and
data processing methods:

 Cadence or rhythm (number of steps per unit time)

 Stride length

 Velocity

 Direction of leg segments

 Step angle

 Swing time for each foot

 Step width

 Support time

 Ground Reaction Force (GRF)

 Electrical activity produced by muscles

 Momentum and forces

 Body posture

It is well worth bringing up at this point, that while
the listed parameters have clear observational value, it is hard
to declare that any of these, or their combination, would
characterize the maximum variability of the uncooked
statistics due to a fitness condition. This issue has a direct
impact on the capability to detect, with the lowest threshold
less expensive through the uncooked records quality, a
significant deviation from the norm.

B. Applications of Gait Analysis

The field of research in human gait is broad, with
many specific applications. In clinical applications, as gait
abnormality impacts a excessive share of the population, gait
is studied to diagnose neurodegenerative diseases such as
Parkinson’s disease (PD), myelopathies, spinal amyotrophy,
more than one sclerosis, cerebellar ataxia, intelligence tumors,
cranioencephalic trauma, positive sorts of dementia,
neuromuscular diseases etc. [17]. In fact, the floor response
force of humans all through the gait cycle has been used to
observe PD in [18]. The study shows that stance time, swing
time, stride time and foot strike profiles can be used to
distinguish PD patients from healthy controls. In addition, the
spatiotemporal parameters of gait have been studied [19] to
investigate lower limb prosthesis users.

In protection applications, gait evaluation as a
biometric has demonstrated its success to distinguish and

perceive people, with minimal cooperation required from the
subject. The aim is to perceive humans from a faraway
primarily based on their on-foot habit. Typically, people gait is
captured by CCTV cameras as suggested in [20], [21]. In [22],
[23], the floor response pressure has been determined to be
enormous in figuring out topics primarily based on their
footstep alerts and stepping behavior.

Injuries in many instances appear at some stage in
sports activities pastime and some techniques to consider
athletes’ recovery are based totally on gait,e.g. by means of
analyzing forces exerted on each muscle through
electromyography in [24]. The kinematic parameters of gait
are used to analyze a variety of indoor and out of doors
activities, such as sports coaching and medical rehabilitation
of sufferers using a wearable sensor [13]. Even exceptional
gait characteristics evaluation techniques are used to assess
athletes’ potential to return to recreation after surgical
procedure due to tear in the anterior cruciate ligament which
motives knee instability [25]. Further, the gait dual-task
paradigm for comprehensive athlete contrast following a
sports-related concussion are reviewed in [14].

It is fascinating to word that gait analysis is utilized
to clas- sify a person’s gender based totally on their gait [26].
Furthermore, tries to pick out a person’s emotional state, such
as pride, happiness, fear and anger, have been based totally on
gait [27].

C. Deep Learning for Gait Analysis

Supervised machine learning is a branch of artificial
intelligence (AI) and a particular variety of machine learning.
Algorithms or mathematical models are built and educated
with a given set of inputs and desired outputs. A getting to
know algorithm trains the mannequin based on two gaining
knowledge of styles, shallow learning or deep learning, to
produce an educated “machine” that incorporates out the
desired task. The fashions are tested by exploring the
information structure primarily based on the learned mapping
feature to assign speculation type which is managed by way of
the person to consider the model performance [28]. Shallow
getting to know depends on handcrafted features discovered in
a predefined relationship between the inputs and the output,
such as linear regression, logistic regression, choice tree,
Support Vector Machine (SVM), random forest, naïve Bayes,
and k-nearest neighbor.

Deep structured gaining knowledge of or hierarchical
getting to know is inspired by means of the biological neural
networks’ shape and function. It is based totally at the start on
the idea of multi-layer Artificial Neural Network (ANN) with
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the goal to analyze statistics representations automatically;
thus, deep studying will become the method of preference the
place the classification features, if known at all, are complex,
with no straight forward quantitative relation to the raw data.
Typically, the time period ‘deep’ refers to the quantity of
layers in the variety of viable networks structures: Deep Belief
Networks (DBN), Feedforward Deep Networks (FDN),
Boltzmann Machine (BM), Generative Adversarial Networks
(GAN), Convolutional Neural Networks (CNN), Recurrent
Neural Networks (RNN), and Long-Short Term Memory
(LSTM) a distinct form of RNN. A comprehensive
presentation of the theory of ANNs and deep gaining
knowledge of is no longer inside the scope of this Review, and
the reader is referred to set up sources [29]. Further, we focal
point on models with sensible value for gait purposes such as
CNN and LSTM [30].The CNN model is suitable for
processing 1D, 2D or 3D data that has a known grid-like
topology [31]. The network has the ability to learn a high level
of abstraction and features from large datasets by applying a
convolution operation to the input data. Commonly, the
network consists of convolution layers, pooling layers and
normalization layers, with a set of filters and weights shared
among these layers.

The convolutional layers output a feature map
harvested automatically from the raw input data. The pooling
layers are utilized to reduce the size of representation and
make the convolution layer output more robust [29], [30]. The
CNN model uses commonly two types of pooling layers: max
pooling and average pooling. All convolution layers and
pooling layers have activation functions (e.g. Sigmoid, Tanh,
ReLU, Leaky ReLU), to calculate the weight of neuron and
add a bias, deciding whether to fire the neuron or not [32].

LSTM networks are favorable for processing time
series data, where the order is of importance, such as gait data
sequences. In essence, they exploit recurrence, by using infor-
mation from a previous forward pass over the network.

The computational complexities of deep learning are
not specific to gait applications. The goal of using ANNs in
gait analysis is to develop a model to extract gait features and
perform well on unseen real-world gait data with high
prediction accuracy. Commonly, for appropriate training and
testing, the model is trained and validated on 70% of the data
and tested on the remaining 30%. In supervised train- ing, the
procedure is launched by initializing the weights randomly,
processing the inputs and comparing the resultant output
against the desired output. During training, the weights and
biases are adjusted in every iteration, until the error is
minimized, and validation is used to estimate the model

performance during training. Lastly, the model is tested with
unseen data, allowing to identify over-training.

The widely used accuracy measure for ANN gait
analysis is the confusion matrix [33]. It is a table to visualize
the number of predictions classified correctly and wrongly for
each class. The table consists of true positive, true negative,
false positive, and false negative classification occurrences.
One of the advantages of the confusion matrix display is that it
is straightforward to identify the decision confusions, thus
possibly concluding on the quality of the model and data
involved.

III. GAIT MODALITIES

The evolution of research in gait analysis suggests
that, in order to capture the distinctiveness of gait, the various
sens- ing modalities attempt to access biomechanical measures
per- taining to the body’s physical dimensions, body part
masses, or the time-varying muscle-generated forces applied
during the gait cycle. In the past decades, a number of
modalities have proven their ability to capture gait
characteristics and anomalies; however, the historically
established methods used

Fig. 2. From right to left: video sequence, silhouette images
and EGI image [20].

and skeleton model-free categories. (The above sub-division
reference is to skeleton models, not machine learning models.)
The model-based approach is in essence fitting video
sequences of gait to multi-segment skeleton models, as pro-
posed in [34], [35]. This method is computationally expensive,
because of fitting skeletal segment models on sensor data, as
well as the need to use the model-derived parameters to
extract features. The extracted features are classified using
shallow learning methods.

The model-free approach is based on extracting gait
from VS using feature engineering, as proposed in [36], [37].
Here, deep learning is utilized to automatically extract gait
features from VS, which maximizes the use of data variability
and eliminates the dependence on handcrafting. Most of the
avail- able model-free processed data is represented by Gait
Energy Image (GEI), maps of optical flow and silhouettes [38]
or Chrono-Gait Images (CGI) [39], [40]. These
representations, extracted from VS, can capture both spatial
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and temporal information. As an example representation, GEI
is defined mathematically as:

to analyze gait heavily rely on handcrafted features. With such
an approach, salient features of the problem may be lost in the

process of feature engineering, and the classification
result can be data dependent. This can be mitigated by
utilizing deep learning for its capability of automatic feature
extraction, delivering high statistical confidence by learning
rich features of gait patterns from sensor data. Sensing
modalities for gait data capture used in conjunction with deep
learning can be divided into three main groups: video
sequence (VS), wearable sensors (WS), and floor sensors
(FS); further, each of these is described in more detail. In
addition, the different types of algorithms typically applied to
analyze gait data are presented and their ability to adjust to the
characteristics of a modality or and/or scenario is elucidated.

A. Video Sequence

Gait recognition based on VS has been driven by the
advances in general machine learning and image processing
methods. The most common aim is to distinguish the identity
of a person from a distance. A typical VS system consists of
several cameras with optics suitable for capturing the gait
cycle. Common VS data sources are suitably positioned
CCTV cameras. The information gathered in the form of
sequential video frames is subjected to image processing
techniques, such as threshold filtering, edge detection, pixel
count, background segmentation, counting of light and dark
pixels, and converting images to black and white [17]. Gait
recognition based on VS in literature is sub-divided into
skeleton model-based

where s is the total number of frames to represent one
gait cycle, and Ft (x, y) is the binary silhouette of the subject at
time t. Figure 2 shows schematically the extraction of GEI
from the video sequence.

1) Video Sequence Databases: Once the VS representation
algorithm is implemented, the machine learning model must
be trained, validated and tested to assess its performance. The
widely used benchmark is to train and test the algorithm with
the following datasets (in chronological order of availability):
CMU Motion of Body (MoBo) [41], USF Gait Based Human
ID Challenge [42], CASIA [43], OU-ISIR treadmill [44], OU-
ISIR [45] and TUM-GAID [46].

The Carnegie Mellon University Robotics Institute
Motion of Body (MoBo) dataset [41] encompasses 25 subjects
per- forming four different walking patterns on a treadmill,
namely slow walk, fast walk, incline walk and walking with a
ball. The subjects’ gait is captured by six high-resolution
cameras, distributed around the treadmill.

The University of South Florida Gait Based Human
ID Challenge dataset [42] captures 122 subjects walking
outside with shoes and clothes variations, as well as under
different carrying load conditions. Gait is captured from a
single viewing angle.

The Chinese Academy of Sciences Institute of
Automation Gait Database CASIA [43] is divided into A, B,
C, and D datasets. The CASIA A dataset contains 20 people;
for each person, it contains 12 image sequences, four
sequences for each of 3 angles (0, 45 and 90 degrees) to the
image plane. The CASIA B dataset consists of 124 subjects’
gait sequences captured from 11 views. The subjects
performed normal walking, wearing a coat while walking, and
carrying a bag while walking. The CASIA C dataset was
captured by an infrared (thermal) camera from 153 subjects
performing normal walking, slow walking, fast walking, and
normal walking with a bag. The video sequence was taken
from one angle at night time. The CASIA D dataset contains
the video sequence and footprint images scans of 88 subjects
with a wide age distribution. The video sequence is captured
from a single angle and with no variations in clothing and
carrying conditions.

The Osaka University Institute of Scientific and
Industrial Research treadmill dataset, OU-ISIR treadmill [44],
contains 200 subjects’ gait captured on a treadmill by 25
cameras from different angles, 34 subjects with walking at
different speeds and 68 subjects with 32 clothing variations.
The dataset is dis- tributed in the form of silhouette sequences
of subjects while walking on a treadmill. The same group’s
database on normal surface walking (not involving a
treadmill), OU-ISIR [45] dataset, contains 4,007 (2135 males
and 1872 females) with ages from 1 to 94 years. The dataset
consists of silhouette sequences of the subject’s gait captured
by two cameras.

The Technical University of Munich Gait from
Audio, Image and Depth database, TUM-GAID [46], contains
305 subjects’ gait captured by video recording cameras at a
single angle, while subjects walk indoors in both directions.
Six walking conditions are captured for each subject from the
side view namely four normal walks: one with coating, shoes
and one without (left and right), and two normal walks with
carrying a backpack variation (left and right). 32 subjects of
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the cohort are recorded in two sessions (January and April),
adding clothes variation.
2) CNN Architectures: Table I summarizes the results yielded
by gait recognition VS models, comparing deep con-
volutional ANNs with automatic feature extraction to shallow
learning algorithms, where features are handcrafted. Deep
learning models can be split into two groups, a single deep
ANN and multiple deep ANNs joined in the last layer. The
network inputs are single or a pair of processed silhouettes
sequences. The latter case is mostly used for verifying individ-
ual’s identity, with a view of ’probe and gallery’ gait features.
The ’probe‘ is an identified or verified subject, and the
’gallery‘ consists of templates as a browsing data set, where
the probe is searched and matched to the closest instance in
the gallery. These are examined in more detail below, for gait
identification or verification.

a) Single deep ANNs: The single ANN input is a video
sequence of images, on which the top softmax layer will
perform classification based on the desired output for the
given input. The softmax score outputs 1 for the true-match
subject and 0 for false-match subjects. During validation, the
loss is computed using cross-entropy between the softmax
outputs and the corresponding desired output (the ground
truth). Single CNN with a single input architecture has been
investigated by a number of groups, with some examples
outlined below.

TABLE I
RESULTS FOR GAIT RECOGNITION FROM VS

Yeoh et al. [47] used a CNN model trained on a
single input as GEI. For testing, the softmax classifier in the
last layer based on Euclidean distance is replaced by a Support
Vector Machine (SVM) classifier to compute one-vs-all
(probe vs gallery). The model, evaluated on OU-ISIR

Treadmill dataset, yielded competitive performance in
clothing-invariant for the identification of people.

Yan et al. [20] proposed a CNN model with
Multilayer Perceptron (MLP) classifier. The input is a single
GEI for automatic extraction of gait features. The CASIA-B
dataset is used for evaluating the methods. The model is
trained using multitask learning to predict multiple human
attributes. 95.88% accuracy for each task is achieved;
however, it was realized that the changes of scenes or view
could be general- ized better by training on more data.

Shiraga et al. [48] designed GEINet, which is a CNN
with two sequential groups. The network input is a single GEI
image (from OU-ISIR database) in the training stage. In the
testing stage, the dissimilarity between a probe GEI and
gallery GEI pair is computed using the distance between them
at the fully connected layer. The model performs well on
cross-view for gait verification and identification.

Wolf et al. [49] proposed a 3D CNN with a 3D spatio-
temporal tensor as input, consisting of a grey-scale image for
the first channel and optical flow for the second and third
channels. The model is trained and tested using the CASIA-B
dataset, MoBo database and UFS database. The approach was
evaluated on variations in walking speed, clothing and the
view angle. Based on this architecture, Castro et al. [50] used
a spatiotemporal 3D tensor of the optical flow as the input of
the CNN. The network was trained and tested using the TUM-
GAID database with gait scenarios, clothing and carrying
variations for each subject. Although the network accuracy
was significantly improved using the optical flow rather than
using silhouette-based input. However, it is difficult to
generalize on which feature extraction method outperformed

Fig. 3. [54]: High-level difference architectures for small
view-angle differences: a) Siamese CCN with probe and

gallery input; b) Triplet CNN with positive probe, negative
probe and gallery; Low-level difference variants of a) and b)
for substantial view-angle differences: c) single CNN with

probe and gallery;
d) Siamese CCN.

the other, since [49] and [50] are evaluated on
different datasets. Nevertheless, it is clear that the optical flow
feature can present robust gait spatiotemporal information for
use in a CNN architecture.



IJSART - Volume 9 Issue 5 – MAY 2023                                                                                           ISSN [ONLINE]: 2395-1052

Page | 1247 www.ijsart.com

b) Dual deep ANNs: The input into a dual network consists of
two different images, as probe and gallery under similar
conditions; however, different gait scenarios, viewing angle,
as well as clothes and carrying conditions, may be involved.
This architecture is effective in gait verification since the
networks have the same weight and structure, which allow the
extraction of gait features automatically in the same manner.
The outputs are matched using contrastive loss to find the
Euclidean distance. The latter can be compared to a threshold
to identify matching pairs or to label an imposter if a match
cannot be found. Below is an outline of architectures applied
for CNNs with two inputs. Figure 3 [54] presents some dual
architectures used for verification and identification.

Zhang et al. [55] designed a shared parameters
‘Siamese twin’ CNN, each twin comprising a convolutional
layer, a max-pooling layer and three fully connected layers to
extract gait features automatically. The two twin outputs are
connected to the contrastive loss layer. A pair of similar or
dissimilar GEI images from the OU-ISIR database are used as
an input to the Siamese network. In the training stage, the
weights are shared simultaneously to optimize the network,
and the model is fine-tuned by back-propagating with a
contrastive loss. The gallery member with the nearest training
sample is identified by testing to allow the feature metric
computation of a discriminative loss function. The latter drives
the similarity metric [56] to be small for pairs representing the
same subject, and large for different subjects. Considering the
changes of cross-view in real-world human identification
scenarios, the model performs well in gait verification.

Wu et al. [57] proposed a CNN to extract gait
features directly from the raw silhouettes’ sequence for cross-
view gait recognition. Gait sequences from the CASIA-B
dataset are used to train and test the network. In the testing
stage, the Euclidean distance is measured for similarity using
the probe and gallery method, achieving an accuracy of
94.1%. Furthermore, in [58] several CNN that take two inputs
as probe and gallery have been shown to outperform other
approaches, including twin CNNs [55], [57]. Two GEI images
are used for gait verification based on cross-view gait
recognition. The dataset to train and test the proposed
networks are the CASIA-B dataset, OU-ISIR database and
USF database. The proposed methods outperformed the
previous state-of-the-art methods by a significant margin in
the three datasets.

For cross-view gait recognition, Takemura et al. [54]
consid- ered different architectures for verification and
identification. This is based on the assumption that the
absolute similarity scores are important for the verification
task, while the relative similarity scores between a probe and

the galleries are impor- tant for the identification task. For
verification, a Siamese CNN with shared parameters is
proposed (see figure 3a) to discrimi- nate whether two inputs
originate from the same subject or not, based on the
contrastive loss value. For identification, three parallel CNNs
are deployed as a triplet network (see figure 3b). The triplet
input is three GEIs: a query (the probe subject), a positive
(from the same subject) and a negative (from a different
gallery member). A triplet ranking loss is defined as the
difference between two feature vector distances: the distance
between positive and query and the distance between negative
and query. The parameters of the triplet CNN are trained so
that the dissimilarity between a probe and the same subject is
relatively lower than that between a probe and different
subjects. To accommodate possible substantial differences in
the GEIs by viewing angle, low-level difference structures are
introduced, as they are more directly affected by

Fig. 4. Gait GEI images at 14 viewing angles [54].

appearance differences due to taking the difference
between a matching pair closer to the input level (see figure
3c) and figure 3d). Cross-view gait recognition is
demonstrated on OU-ISIR and OU-ISIR Multi-View Large
Population datasets, with 10,307 subjects’ video sequences
captured from 14 angles (see figure 4); however, the existing
methods are difficult to evaluate on this dataset, and OU-ISIR
LP is utilized to confirm the hypothesis regarding the network
architecture.

3) Transfer Learning: Transfer learning is a comparatively
new concept in ANNs and is the next strongest driver, after
supervised learning, of the commercial success of machine
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learning [59]. Essentially, it is applying knowledge gained to
solve a problem to a multiplicity of related problems. ‘Pre-
trained’ models are beneficial as a starting point on specific
ANN solutions, given the vast computing and time resources
required to develop detailed physical models on these
problems. Compared to starting from scratch, Transfer
learning allows a substantial jump in the starting point for the
delivery of a related ANN model [60].

Li et al. [61] used supervised pre-training of a VGG-
D CNN (Visual Geometry Group) model and evaluated the
efficacy of learned features on gait recognition tasks. The
network consists of 16 convolutional layers and 3 fully
connected layers with a nearest neighbor classifier. The
silhouette images from the OU-ISIR dataset are used to train
and test the network without fine tuning to capture gait
spatiotemporal aspects. The probe and gallery method is used
to identify people in a cross-view setting, significantly
outperforming prior state- of-the art methods for both
verification and identification.

Alotaibi and Mahmood [15] determined empirically
the appropriate CNN architecture for automatic gait feature
extraction from GEI images using the CASIA-B dataset. They
applied two transfer learning methods to the network
pre-trained with 24 subjects. ‘Fine-tuned CNN’ involved
adding one more subject (new total of 25 subjects) and
dropping the weights of the softmax layer followed by re-
training of the entire model; ‘re-learn softmax only’ involved
‘freezing’ the weights of the convolutional layers and the
weights of the softmax layer were re-learned. While the
computational time for pre-training was 124.82 s, adding a
single subject by fine-tuned CNN took 42.41 s and only 22.12
s by softmax re-learning.

B. Wearable Sensors

WS are an obvious means to acquire human gait due
to their convenience, efficiency and lower price. Unlike other
gait capturing systems, WS impose upon the user to coop-
erate wearing the device in a non-invasive way to provide gait
signals. The advances in electronic devices and signal
processing techniques have extended the applications of WS
sensors to produce a measurement of human body orientation,
position and specific force in space and time. The inertial
measurement unit (IMU) is a type of WS system that has been
extensively used due to its small size, cost, light weight, and
good precision characteristics. A typical IMU provides the
most widely used combination of sensing modalities to
capture human activities, including gait. It comprises of an
accelerometer, a gyroscope and often a magnetometer, which
gives the heading direction. Additional components such as

batteries, microprocessors and communication modules are
arranged to jointly operate an IMU system.

Gyroscope sensors measure the angular velocity as the rate of
change of the sensor’s orientation, while accelerometer
sensors measure the acceleration of the body resulting from
the acting forces in the opposite direction. A combination of
these sensors can create a comprehensive report on the human
body orientation, gravitational forces, velocity and
acceleration [5].

Furthermore, it has been found convenient to use the
gyroscope and accelerometer, usually integrated in a smart-
phone, benefiting from predictable availability and
positioning, as well as eliminating the need for additional
hardware. Mobile users’ authentication is an acceptable
approach when other gait authentication is not deployable. In
the health- care domain, IMU-equipped smartphones allow
inexpensive prediction of falls due to neurological disorders or
freezing of gait in patients [62]. The computing power on-
board of a smartphone can be used as a standalone system to
perform all tasks required for decision making and com-
municating with healthcare providers in any life-threatening
situation.

The analysis of WS signals is a challenging task con-
sidering the large number of observations recorded per unit
time. This is due to the spatiotemporal nature of the gait cycle
and the difficulty to relate in a straightforward manner WS
signals to a known gait characteristic. Manual feature
extraction is the classical way for gait analysis using WS, and
it is time-consuming and depends on knowledge of the context
in which the signals are acquired. Since perfor- mance is key
in real world applications, deep learning has emerged as a
promising data processing method by extracting

TABLE II
RESULTS FOR GAIT RECOGNITION FROM WS

automatically reliable discriminative features of
human gait, outperforming the approaches based on
handcrafted features. Table II summarizes the results yielded
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by gait recognition models based on WS using various deep
ANN models.

The sensor position on the body and the number of
sen- sors comprising the system are an essential factor for the
quality of the harvested data. In a systematic review analy- sis,
Panebianco et al. [63] assessed accuracy and repeatability
using 17 algorithms for their ability to monitor temporal
parameters of human gait from 5 IMUs: one on the back, two
pairs on the shanks and two pairs on the feet. For estimates of
stance time, algorithms based on the acceleration of the shank
and foot perform better than those based on the lower back;
however, the sensor position did not affect the step estimation.
For toe-off and heel strike detection, algorithms estimating
angular velocity performed better overall, with notable
dependence on the sensor positioning. Analysis has concerned
mostly with the distinction between normal and abnormal gait,
as follows below.

1) Normal Gait Analysis: Analysis of normal gait para- meters
using WS has immensely attracted the interest of researchers
and clinicians. The following are different methods and
techniques that have been proposed and implemented for
various applications.

Zebin et al. [64] proposed a system comprising 5
IMU sensors, worn on the lower back, thighs and shanks, for
activity recognition including gait. A CNN based model is
used to extract the features automatically from time-series raw
data and achieve higher accuracy compared to the handcrafted
features with shallow learning. In another work, 7 IMUs posi-
tioned on the chest, arms and legs along with the12 accelerom-
eters close to the limb joints, were used by Ordóñez and
Roggen [65]. A DeepConvLSTM model is trained in a fully-
supervised manner on human activities including gait. The
DeepConvLSTM model outperforms previous results on the
same dataset. However, increasing the number of sensors
exacerbated the extraction of gait features compared to the use
of WS attached to the pelvis and lower limb only [64].

For gait authentication, Gadaleta et al. [66] used a
CNN model (see figure 5) to extract gait features from a single
WS placed on the shank for each subject. Data from 15
subjects’ gait is used in the training stage and 9 in the testing
stage. In the latter, the network weights are frozen, and the
CNN model is used to extract features, further the features are
feed to SVM for classification. Thus, increasing the training
dataset was suggested for improving the model performance.
In a later work by Gadaleta and Rossi [67], the proposed CNN
model is used to extract gait feature vector from a single
subject automatically, the gait feature are used to train a
single-class SVM. The system can distinguish between an

impostor and the user whose gait is used for training. The
IMU signals acquired from smartphones are tested on a user
against 14 impostors, yielding false positive and false negative
rates less than 0.15%. Zhao and Zhou [68] proposed a CNN
model for gait labeling and authentication. The input to the
network for automatic gait features’ extraction is an Angle-
Embedded Gait Dynamic Image (AE-GDI), which is a
transformation of a WS data series. This allowed comparison
with the state-of-the- art performance on VS (OU-ISIR) and
WS (MCGILL [69]) datasets.

Similar to [64], Dehzangi et al. [70] placed 5 WS at
various body locations. WS signals obtained from the sensors
at chest, right wrist, knee and ankle, as well as the lower back
of the subject, allows the study of CNN performance on time-
frequency image transformation of raw signals. A total of 10
subjects’ gait data were used to train and test the network;
accounting for the multi-sensor character of the data, early and
late fusion methods were applied, achieving state- of-the-art in
subject identification. The deep learning approach to sensor
fusion is addressed in more detail in Section VI.

2) Abnormal Gait Recognition: Deviations from normalgait
are extensively studied by WS, the main targets being to
classify neurodegenerative conditions, or to prevent falls in
older adults. While the assumptions underlying various algo-
rithms differ, in practical applications it often appears more
convenient to use a single WS for capturing a discriminative

Fig. 5. Convolutional neural network to extract and classify
gait features from wearable inertial measurement unit with

accelerometer and gyroscope sensors [66].

gait feature. The sensor system embodiments used for
abnor- mal gait analysis can be grouped into dedicated IMU
systems and smartphones. Lorenzi et al. [71] used a single
IMU unit positioned on the head, to collect gait patterns
during the gait cycle, aiming to distinguish normal gait from
the freezing of gait and irregular steps in Parkinson’s disease
(PD), using dynamic time warping to select the input features
to the ANN. Deep learning recommended itself as an
improved approach to recognizing the abnormality in human
gait, in terms of classification accuracy and computational
requirements. Camps et al. [72] used a waist-positioned IMU
and an 8-layers CCN to achieve an accuracy of 90.6% to
detect freezing of gait (FOG) detection in PD patients. The
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optimal architecture implemented with two convolution layers
and 20 convolution filters. The gait of 32 patients was
recorded by a smartphone accelerometer and gyroscope
casually placed in the subject’s trouser pocket. The CNN
detected the FOG events in Fourier space with 91.8%
accuracy, which is slightlyhigher than the CNNs methods
proposed in [72].

In a recent study, Xia et al. [74] proposed a CNN to
extract gait features from three accelerometers positioned
above the hip, knee, and ankle. Against the aim to dis-
tinguish FOG events from normal gait, evaluation on the
Daphnet FOG dataset [75] from 10 subjects yielded an accu-
racy of 90.60%. Several other deep ANNs [76], [77] have
been trained and tested for human activity recognition from
raw spatiotemporal datasets, including the FOG dataset used
in [75]. Rad et al. [76] and Hammerla et al. [78] used a CNN
performing well in human activity recognition; however, the
performance on the FOG dataset was weaker. Murad and Pyun
[79] improved the FOG recognition accuracy to 94.1% with
their proposed deep RNN trained on the Daphnet FOG dataset.
Ravì et al. [77] argued that deep learning models do not
perform well when a small number of activity segments are
available and proposed feature fusion, where shallow features
are fused with features derived by deep learning in the fully
connected and the softmax layers. With Daphnet FOG data,
this method yielded for ‘freeze’ and ‘no freeze’ precision of
67.89% and 97.40%, as well as recall of 59.52% and 98.15%,
respectively.

As an alternative use of deep learning, stride length
esti- mates are derived in clinical settings to indicate, an early
or further progression stage of neurological disorders. In the
work reported by Hannink et al. [80], stride length is
estimated automatically using WS and deep CNNs. The WS
set consists of a 3D-accelerometer and a 3D-gyroscope
attached below each ankle joint. The aim of this approach is to
extract spatiotemporal gait parameters to aid the physician in
scor- ing gait impairment objectively. The CNN performance
was evaluated on the eGAIT dataset [81], using 10-fold cross
validation on three different stride types. It was observed that
the performance was dependent on stride definition and the
better results were achieved for mid-stance to mid-stance
intervals. Importantly, the CNN analysis of WS data was not
affected by the use of a four-wheeled walking aid, where the
data processing became problematic with the GAITRite
walkway sensor system (see Section IV. C.).

Gait analysis using WS has been extensively studied
for the detection of falls in older adults. Most of the reported
work is based on handcrafted features deep learning is
appeared as an improved approach in terms of increased

classification accuracy and reduced computational load. Aicha
et al. [82] reported work on CNN, LSTM, and ConvLSTM
models used to extract gait features from raw accelerometer
signals positioned on the lower back. The model trained and
tested on 296 participants’ gait to predict fall risk as the main
task and user identity as an auxiliary task. The models’
performance with features extracted using deep learning was
observed to be marginally better compared to handcrafted
features.

Hu et al. [83] attempted to capture the higher risk of
falling while walking on uneven surfaces as compared to the
flat surfaces walk. Essential here is the ability of subjects, as a
function of age, to produce the stability required to avoid a
fall. A single IMU unit positioned on the trunk delivered raw
signals from 35 users: 17 older adults (age: 71.5 4.2 years) and
18 young adults (age: 27.0 4.7 years) used as input to the
LSTM network. Automatically extracted spatiotemporal gait
parameters are used to classify age-related differences in
walking on flat or uneven surfaces.

IV. CONCLUSIONS

The character of gait statistics poses the trouble of
figuring out facets appropriate for gait classifications, suited in
a wide variety of software areas. The three gait-sensing
modalities included in this Review have produced records
which is most amenable to the use of deep learning, to tackle
the automated extraction of such features. Deep studying
CNNs usually outperform shallow getting-to-know fashions in
the most vital metrics. Furthermore, multi-sensor and multi-
modality fusion outcomes in higher accuracy and robustness.
This is executed by using the on-hand flexibility in
information representations, ANN architectures, and the
preference for mannequin hyper-parameters. Gait evaluation
benefits from strategies brought and examined for different
purposes of deep learning. However, it requires specific
interest due to its spatiotemporal character, the selections for
ubiquitous gait sensing, and the privacy issues they raise, as
properly as the fee of attaining research, improvement, and
commercialization objectives. Deep gaining knowledge of
multi-sensor, multi-modality gait records provides new
preferences in the robust power in the direction of customized
healthcare, as nicely as in the direction of extra strong and un-
intrusive biometrics for security and security. These are some
of the challenges of the day, however, the state-of-the artwork
indicates a promising step in achieving similarly into the
future, alternatively than simply the contemporary horizon.
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