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Abstract- Traditional voice conversion methods rely on
parallel recordings of multiple speakers pronouncing the same
sentences. For real-world applications however, parallel data
is rarely available. In this paper, demonstrating a voice
conversion method that relies on non-parallel speech data and
is able to convert audio signals of arbitrary length from a
source voice to a target voice. We firstly compute
spectrograms from waveform data and then perform a domain
translation using Generative Adversarial Network (GAN)
architecture. An additional Siamese network helps preserving
speech information in the translation process, without
sacrificing the ability to flexibly model the style of the target
speaker. We test our framework with a dataset of clean speech
recordings, as well as with a collection of noisy real-world
speech examples. Finally, we apply the same method to
perform music style transfer, translating arbitrarily long
music samples from one genre to another, and showing that
our framework is flexible and can be used for audio
manipulation applications different from voice conversion.

Keywords- Generative Adversarial Network (GAN), Siamese
network, Spectrograms.

I. INTRODUCTION

We have all heard about image style transfer:
extracting the style from a famous painting and applying it to
another image is a task that has been achieved with a number
of different methods. Generative Adversarial Networks
(GANs in short) are also being used on images for generation,
image-to-image translation and more. But what about sound?
On the surface, we might think that audio is completely
different from images, and that all the different techniques that
have been explored for image-related tasks can’t also be
applied to sounds. But what if we could find a way to convert
audio signals to image-like 2-dimensional representations?
This kind of sound representation is what we call
“Spectrogram”, and it is the key that will allow us to make use
of algorithms specifically designed to work with images for
our audio-related task. A spectrogram is a visual
representation of the spectrum of frequencies of a signal as it
varies with time. When applied to an audio signal,
spectrograms are sometimes called sonographs, voiceprints, or
voice grams.

Fig 1 : Example of a Spectrogram

Given a time-domain signal (1 dimension) we want
to obtain a time-frequency 2-dimensional representation. To
achieve that, we apply the Short-Time Fourier Transform
(STFT) with a window of a certain length on the audio signal,
only considering the squared magnitude of the result. In
simpler terms, we divide our original waveform signal into
chunks that overlap with one another, extract the magnitude of
the frequency in the chunk (with a Fourier Transform), and
each resulting vector is going to represent a column of our
final spectrogram. The x axis of the spectrogram stands for
time, while the y axis represents the frequency.

To make these spectrograms even more useful for our
task, we convert each “pixel” (or magnitude value) to be in the
decibel scale, taking the log of each value. Finally, we convert
spectrograms to the Mel scale, applying a Mel filter bank,
resulting in what are known as “mel-spectrograms”. This
allows us to make the spectrogram representations more
sensible to our human understanding of sound, highlighting
the amplitudes and frequencies that us humans are more prone
to hearing. It is also extremely important to note that
spectrograms can be turned back into “audible” waveform
data: it won’t be a perfect reconstruction (phase information is
missing in our magnitude spectrograms) but thanks to an
algorithm called Griffin-Lim we are able to approximate phase
and recreate realistically sounding audio.

Problem Statement:
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We are to build and train a system capable of
performing voice conversion and any other kind of audio style
transfer (for example converting a music genre to another).
The method is heavily inspired by recent research in image-to-
image translation using Generative Adversarial Networks,
with the main difference consisting in applying all these
techniques to audio data. We will be able to translate samples
of arbitrary length, which is something that we don’t see very
often in GAN systems.

Proposed System:

The above-mentioned system is possible to be built
using the TraVeLGAN (Transformation Vector Learning
GAN) GAN architecture. In addition to a Generator and a
Discriminator (or Critic), TraVeLGAN introduces a Siamese
network (a network that encodes images into latent vectors) to
allow translations between substantially different domains
keeping a content relationship between the original and
converted samples.

II. METHODOLOGY

2.1 Choosing the Architecture:

There are a number of different architectures from the
computer vision world that are used for image-to-image
translation, which is the task that we want to achieve with our
spectrogram representations of audio. Image-to-image
translation consists in converting an image from a domain A
(pictures of cats for example) to a different domain B (pictures
of dogs), while keeping content information from the original
picture (the expression and pose of the cat). Our task is
practically the same: we want to translate from speaker A to
speaker B, while keeping the same linguistic information from
speaker A (the generated speech should contain the same
words as the original speech from speaker A).

The most famous GAN architecture built for this goal
may be Cycle GAN, introduced in 2017 and widely used since
then. While Cycle GAN is very successful at translating
between similar domains (similar shapes and contexts), such
as from horses to zebras or from apples to oranges, it falls
short when rained on very diverse domains, like from fishes to
birds or from apples to carrots. The cause of this shortcoming
is the fact that Cycle GAN heavily relies on pixel-wise losses,
or in other words, its loss tends to minimize differences in
pixel values of real and generated images: intuitively, when
converting an image of an object (an apple for example) to a
substantially different domain (carrot) we need to change the
main shape of the original object, and Cycle GAN can’t help
us in this case.

Spectrograms of speeches from different people (or
spectrograms of musical pieces of different genres) can be
very visually different from one another: thus, we need to find
a more general approach to the problem, one that does not
involve being constrained by translating between visually
similar domains.

2.2 Proposed Solution – TraVeL GAN

Our goal is to find a way to keep a relationship
between the original and generated samples without relying on
pixel-wise losses (such as the cycle-consistency constraint in
CycleGAN), that would limit translations between visually
similar domains. Thus, if we encode the images (or
spectrograms) into vectors that capture their content
information in an organized latent space we are able to
maintain a relationship between these vectors instead of the
whole images.

That’s exactly what a siamese network allows us to
achieve. Originally used for the task of face recognition, the
siamese network takes an image as input and outputs a single
vector of length vec_len. Specifying with a loss function
which image encodings should be close (images of the same
face for example) in the vector space and which ones should
be far apart (images of different faces) we are able to organize
the latent space and make it useful for our goal.

Fig 2: The Siamese network encodes images into vectors

More specifically, we aim at keeping the
transformation vectors between pairs of encodings equal: this
seems an extremely difficult concept to comprehend, but it is
in fact quite easily understandable.
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With G(X) as the translated image X (output of the
generator), S(X) as the vector encoding of X and A1, A2 two
images from the source domain A, the network must encode
vectors such as:

(S(A1)-S(A2)) = (S(G(A1)-S(G(A2)))

In this way the transformation vector that connects
encodings of a pair of source images must be equal to the
transformation vector between the same pair translated by the
generator.

This allows to preserve semantic information
(differently from CycleGAN that preserves more geometric
content information with its cycle-consistency constraint) in
the translation, allowing the constraining of more “abstract”
relationships between images of different domains.

Formally, to keep content information in the
translation we will minimize the Euclidean distance and the
cosine similarity between the two transformation vectors, so
that both angle and magnitude of the vectors get preserved.

The above is Formal TraVeL Loss.

Furthermore, it is important to clarify that both the
generator and the siamese network must cooperate to achieve
this objective. More specifically, the gradients of the TraVeL
loss get back propagated through both of the networks and
their weights get updated accordingly. Thus, while the
discriminator and the generator have an adversarial objective
(they challenge one another to reach their goal), the siamese
and the generator help each other, cooperating under the same
rules. In addition to this “content” loss, the generator will
learn how to generate realistic samples thanks to a traditional
adversarial loss

III. CONCLUSION AND FUTURE SCOPE

Conclusion:

We have seen how to perform voice translation and
audio style transfer (such as music genre conversion) using a
deep convolution neural network architecture and a couple of

tricks and techniques to achieve realistic translations on
arbitrarily long audio samples.

We now know that we are able to leverage a large
part of the recent research on deep learning for computer
vision applications to also solve tasks related to audio signals,
thanks to the image-equivalent spectrogram representation.

Finally, I would like to conclude by acknowledging
the fact that misusing this and other techniques for badly
intentioned goals is possible, especially in the case of voice
translation. With the rise of powerful machine learning
methods to create realistic fake data we should all be very
aware and cautious when exploring and using this kind of
algorithms: and while the research won’t stop and shouldn’t be
stopped, we should also allocate resources and look into how
to detect the fake data that we helped creating.

Future Scope:

A good application of this project would be trying to
create a dataset of voices from recordings of dead people and
then creating an artificial intelligence trained to mimic the
voices from the dataset using this algorithm. This also gives a
chance for family members to hear the voices of their loved
ones in their everyday life.

This helps reduce the stigma created by Hollywood
movies and also makes it easier for AI to be more widely
accepted by the common public.
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