
IJSART - Volume 6 Issue 6 –JUNE 2020                                                                                          ISSN [ONLINE]: 2395-1052 
 

Page | 355                                                                                                                                                                     www.ijsart.com 

 

A Novel Approach Determining Driving Assistance 

Using Deep Convolutional Neural Networks 

Sahana G M1, Sahana M2, Suma R3, Varsha P 4, Mrs. Vidhya K5 
1, 2, 3, 4Dept of Information Science and Engineering 

5Asst.Prof,, Dept of Information Science and Engineering 
1, 2, 3, 4, 5 East West Institute of Technology, Bangalore, India. 

 

Abstract- Intelligent vehicle systems, such as advanced 

driving assistance systems, are relatively popular nowadays, 

which facilitate the timely prevention of driving-related 

accidents and human injuries caused by impaired driving. 

This paper presents a concept for testing camera based ADAS, 

in order to reduce time and cost in the development phase. By 

adapting an existing virtual environment for the camera 

system, identifying and enhancing the important features for 

the testing detection function. To address the large object 

scale variation challenge, deconvolution and fusion of CNN 

feature maps are proposed to add context and deeper features 

for better object detection at low feature map scales. In 

addition, soft non-maximal suppression (NMS) is applied 

across object proposals at different feature scales to address 

the object occlusion challenge. As the cars and pedestrians 

have distinct aspect ratio features, we measure their aspect 

ratio statistics and exploit them to set anchor boxes properly 

for better object matching and localization.The proposed CNN 

enhancements are evaluated with various image input sizes by 

experiments over KITTI dataset. Experiment results 

demonstrate the effectiveness of the proposed enhancements 

with good detection performance over KITTI test set. 
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I. INTRODUCTION 

 

 Visual object detection is a long standing and 

important research problem for computer vision, with a wide 

range of real world applications. Advanced driver assistant 

systems[1] have been implemented in many vehicles to help 

increase both the safety of drivers and pedestrian. The related 

technology is also used to develop self-driving cars. Three 

features including traffic sign recognition, lane deviation 

detection and car make identification in ADAS that our team 

built. Traffic sign recognition is crucial to remind the drivers 

the traffic signs ahead in order to prevent accidents caused by 

the traffic sign ignorance in the bad weather condition. It can 

be seen as another eyes to guarantee driving safety on the 

road. Lane deviation detection system provides lane detection 

and stability determination, giving drivers warning in the 

condition that car drifting into directions out of lane. Car make 

identification is a useful feature when drivers are interested in 

the make and model of car in their front.Despite fast growth of 

CNN in object detection over datasets with a large number of 

object classes, real time visual object detection in driving 

environment is still very challenging. It is observed that the 

object detection performance of thepopular CNN detectors 

including Faster-RCNN[7]. and SSD[6]without modification 

is not very good over the KITTI benchmark datasets[1]. In the 

existing multi-scale CNN models, feature map from feature 

output scales are processed separately to predict existence of 

objects at fixed scales. In this paper deconvolution of CNN 

features is applied at smaller feature output scales, which is 

further fused with features at larger feature output scales, to 

provide richer context for object detection at individual feature 

output scale. Such enhancement can effectively address the 

large object scale variation challenge.The proposed CNN 

enhancements are evaluated with various image input sizes by 

experiments over KITTI dataset. Traffic sign recognition is 

crucial to remind the drivers the traffic signs ahead in order to 

prevent accidents caused by the traffic sign ignorance in the 

bad weather condition. It can be seen as another eyes to 

guarantee driving safety on the road. Lane deviation detection 

system provides lane detection and stability determination, 

giving drivers warning in the condition that car drifting into 

directions out of lane. Car make identification is a useful 

feature when drivers are interested in the make and model of 

car in their front.The proposed CNN enhancements are 

evaluated with various image input sizes by experiments over 

KITTI benchmark dataset. Good detection performance 

improvement is observed with both individual and combined 

CNN enhancements. Com-pared to the published works over 

KITTI benchmark test dataset our proposed method ranks the 

first for pedestrian detection category “Easy” and second for 

categories “Moderate and “Hard”, and is the fastest among the 

top ten ranked published methods. The object detection time 

with a GPU computer is 0.08 second per 384 1280 sized 

image, which can satisfy the real time requirements of driving 

safety applications. 
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II. ARCHITECTURE 

 

 
Fig1. Proposed System Architecture 

 

The input to the CNN is an image with size H W D, 

where H and W denote image height and width in pixels, and 

D denotes the number of color components.The architecture of 

the proposed system contain an convolutional layer Max 

polling and an fully connected layer . The input is given in the 

form of an image which of matrix form once the input is given 

goes to the convolutional layer were all the unwanted noise or 

image will be filtered since the convolutional layer contain n 

number of filters due to this layer the unwantedly recognized 

image or noise will be removed. Further the output that has 

come from the convolutional layer is taken as the input for 

max polling layer which is responsible for categorizing the 

picture of under which category it belongs to after completing 

this operation or process the output from the max polling layer 

or sub sampling layer is taken as input for again convolutional 

layer these process continues for certain number of times and 

finally comes to an fully  connected layer which contains huge 

number of data where the image is matched with each data 

present in fully connected layer. Fully connected layer is also 

known as SOFTMAX layer. The main building blocks of the 

modified CNN model is presented in Fig.1. The baseline 

network is MS-CNN, which detects candidate objects at 

multiple feature output layers with different scales. To 

differentiate from the MS-CNN, the proposed enhancements 

are highlighted by red boxes in Fig.1. The proposed 

enhancements to MS-CNN are general and are applicable to 

other CNN models such as Faster-RCNN and SSD as well. As 

this layer contain huge number of data or stores different 

number of database the picture in this layer is been matched 

with each and every data present in the layer . The final 

outcome is taken by counting the number of matches found to 

that particular picture or image , as we know that in machine 

learning the values  varies  only from 0 - 1 the hence if the 

matching count is of 0.95 this value will be considered as the 

final value or the outcome of the image and the category of the 

image will be identified of type is the image been found. As 

shown in the architecture each frame contain n number of 

layers which helps us to get an accurate value for the image 

and as checks the accuracy of the image given in the input.  

 

The object detection network has a region of interest 

pooling layer and a fully connected (FC) layer. The outputs of 

upsampled feature maps from the lowest output feature layer 

(i.e. “conv4-3”) and object proposals from soft-NMS building 

block in the proposal networks are used as input to the 

detection networks. The pooling layer extracts the feature 

maps of the object proposals using these inputs. The feature 

maps are upsampled twice to improve the capacity for 

location-aware bounding box regression. Then a fully 

connected layer maps the feature maps into fixed vectors for 

classification and bounding box regression. 

 

 
.  Fig2. Feature fusion method for deconvolution building 

block (DBB). 

 

CNN exploits multi-scale features to produce predic-

tions of different scales, which showed improved object 

detection performance over Faster-CNN[7] and SSD[6] for 

KITTI datasets[1]. It is a good idea to use the feature maps at 

larger scales (lower CNN layers) with smaller receptive fields 

to detect smaller objects and those in smaller scales (higher 

layers) to detect larger objects. However, shallow feature 

maps from the low layers of feature pyramid inherently lack 

fine semantic information for object recognition. There is an 

opportunity to augment the shallow feature maps with deeper 

feature maps from higher feature output layers and improve 

detection performance. 

 

We propose to add DBB to the baseline MS-CNN 

model, with additional deconvolution layers and lateral 

connections to aggregate feature outputs from different layers. 

Using DBBs the semantics from higher layers can be 

conveyed into lower layers to increase the representation 

capacity. There are three DBBs used in the proposed CNN 

model. Fig.2 illustrates the architecture of the DBB used in 

this paper, which connects one feature output layer with its 

adjacent higher layer counterpart. Specifically, we first 

connect a convolution layer. with 512 1 1 filters to an output 

feature layer as shown in the Fig. 2. In addition, in the 

horizontal direction, a deconvolution layer (“Deconv 4 4 512”) 

with 512 4 4 filters is applied to upsample the corresponding 

higher-level feature maps. Then the outputs of these two 

associated feature layers, which have the same spatial size and 
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depth, are merged by element-wise sum and processed by a 

ReLU layer to produce a new output feature layer. In order to 

maintain feature aggregation consistence, the number of 

channels is set to 512 in all DBBs. 

 

There are many possible architecture designs for 

DBBs. For example, for a given feature output layer, the 

output feature maps can be merged with those from both 

higher layers and lower layers. However the computation 

complexity and memory requirement can be increased 

significantly. We examined and compared several alternative 

DBB architectures, some using element-wise multiplication or 

concatenation instead of element-wise sum used in this paper, 

and some adding a batch normalization function block after 

the convolution and deconvolution layers in the DBB as 

shown in Fig. 3. However, according to results from extensive 

experiments, it is found that the implementation shown in Fig. 

3 has the best detection performance and low computation 

complexity. The results demonstrated that the design of DBB 

is not straightforward and specific consideration should be 

taken for different baseline CNN models. 

 

 
Fig. 3.  Example of overlapped proposals. 

 

In many object detection challenge datasets neighbor 

proposals usually correspond to the same object. But due to 

heavy object occlusion in KITTI data set, NMS may remove 

positive proposals unexpectedlyproposals from an image with 

large overlap inFig.3. The proposal for the occluded back car 

may be removed with high probability by the traditional NMS 

method. To address the NMS issue with occluded objects, we 

apply soft-NMS for suppression of overlapped objects. With 

soft-NMS the neighbor proposals of a winning proposal are 

not completely suppressed. Instead they are suppressed 

according to updated objectiveness scores of the neighbor 

proposals, which are computed according to the overlap level 

of the neighbor proposals and the winning proposal. NMS can 

be viewed as a specific case of soft-NMS, in which the 

updated objectiveness scores of the neighbor proposals of a 

winning proposal are simply set to zero. 

 

III. RELATED WORK 

 

the size of the array will be 300x300x3. Where 300 is 

width, next 300 is height and 3 is RGB channel values. The 

computer is assigned a value from 0 to 255 to each of these 

numbers. Тhis value describes the intensity of the pixel at each 

point, the image is passed through a series of convolutional, 

nonlinear, pooling layers and fully connected layers, and then 

generates the output. 

 

 
 

 
Fig 4.  Input Neurons 

 

In recent years, deep learning techniques are 

achieving state-of-the-art results for object detection, such as 

on standard benchmark datasets and in computer vision 

competitions. Notable is the “You Only Look Once,” or 

YOLO, family of Convolutional Neural Networks that achieve 

near state-of-the-art results with a single end-to-end model 

that can perform object detection in real-time. 

 

Yolo-You Only Look OnceAlgorithms based on 

classification. They are implemented in two stages. First, they 

select regions of interest in an image. Second, they classify 

these regions using convolutional neural networks.  

 

The biggest advantage of using YOLO is its superb speed –  

 

 it’s incredibly fast and can process 45 frames per 

second. YOLO also understands generalized object 

representation. 

 

 YOLO-based Convolutional Neural Network family 

of models for object detection and the most recent 

variation called YOLOv3. 
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 The best-of-breed open source library 

implementation of the YOLOv3 for the Keras deep 

learning library. 

 How to use a pre-trained YOLOv3 to perform object 

localization and detection on new photographs 

 

Object detection 

 

To explore the concept of object detection it is useful 

to begin with image classification. It goes through levels of 

incremental complexity.  

 

 
Fig 5. Classification and object detection 

 

Image classification (1) aims at assigning an image to one of 

a number of different categories (e.g. car, dog, cat, human, 

etc.), essentially answering the question “What is in this 

picture?”. One image has only one category assigned to it.  

 

Object localization (2) then allows us to locate our object in 

the image, so our question changes to “What is it and where it 

is?”.  

In a real real-life scenario, we need to go beyond locating just 

one object but rather multiple objects in one image. For 

example, a self-driving car has to find the location of other 

cars, traffic lights, signs, humans and to take appropriate 

action based on this information. 

 

Object detection (3) provides the tools for doing just that –  

finding all the objects in an image and drawing the so-

called bounding boxes around them. There are also some 

situations where we want to find exact boundaries of our 

objects in the process called instance segmentation, but this 

is a topic for another post. 

 

To understand the YOLO algorithm, it is necessary to 

establish what is actually being predicted. Ultimately, we aim 

to predict a class of an object and the bounding box specifying 

object location. Each bounding box can be described using 

four descriptors: 

 

1. center of a bounding box (bxby) 

2. width (bw) 

3. height (bh) 

4. value cis corresponding to a class of an object (such 

as: car, traffic lights, etc.). 

 

In addition, we have to predict the pc value, which is 

the probability that there is an object in the bounding box. 

 

 
 

Here, 

 pc defines whether an object is present in the grid or 

not (it is the probability) 

 bx, by, bh, bw specify the bounding box if there is an 

object 

 c1, c2, c3 represent the classes. So, if the object is a 

car, c2 will be 1 and c1 & c3 will be 0, and so on 

 

 
Fig 6 Detection 

 

As we mentioned above, when working with the 

YOLO algorithm we are not searching for interesting regions 

in our image that could potentially contain an object.  

 

Instead, we are splitting our image into cells, 

typically using a 19×19 grid. Each cell is responsible for 

predicting 5 bounding boxes (in case there is more than one 

object in this cell). Therefore, we arrive at a large number of 

1805 bounding boxes for one image. 

 

How does the YOLO Framework Function? 

 

 YOLO first takes an input image: 
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 The framework then divides the input image into 

grids (say a 3 X 3 grid): 

 

 
 

 Image classification and localization are applied on 

each grid. YOLO then predicts the bounding boxes 

and their corresponding class probabilities for objects 

 

Let’s break down each step to get a more granular 

understanding of what we just learned.We need to pass the 

labelled data to the model in order to train it. Suppose we have 

divided the image into a grid of size 3 X 3 and there are a total 

of 3 classes which we want the objects to be classified into. 

Let’s say the classes are Pedestrian, Car, and Motorcycle 

respectively. So, for each grid cell, the label y will be an eight 

dimensional vector: 

 
 

Here, 

 pc defines whether an object is present in the grid or 

not (it is the probability) 

 bx, by, bh, bw specify the bounding box if there is an 

object 

 c1, c2, c3 represent the classes. So, if the object is a 

car, c2 will be 1 and c1 & c3 will be 0, and so on 

 

Let’s say we select the first grid from the above example: 

 

 
 

Since there is no object in this grid, pc will be zero and the y 

label for this grid will be: 

 

 
 

Here, ‘?’ means that it doesn’t matter what bx, by, bh, 

bw, c1, c2, and c3 contain as there is no object in the grid. Let’s 

take another grid in which we have a car (c2 = 1): 

 

 
 

Before we write the y label for this grid, it’s 

important to first understand how YOLO decides whether 

there actually is an object in the grid. In the above image, 
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there are two objects (two cars), so YOLO will take the mid-

point of these two objects and these objects will be assigned to 

the grid which contains the mid-point of these objects. The y 

label for the centre left grid with the car will be: 

 

 
 

Since there is an object in this grid, pc will be equal to 

1. bx, by, bh, bw will be calculated relative to the particular grid 

cell we are dealing with. Since car is the second class, c2 = 1 

and c1 and c3 = 0. So, for each of the 9 grids, we will have an 

eight dimensional output vector. This output will have a shape 

of 3 X 3 X 8. 

 

So now we have an input image and it’s 

corresponding target vector. Using the above example (input 

image – 100 X 100 X 3, output – 3 X 3 X 8), our model will 

be trained as follows: 

 

 
 

IV. HOW TO ENCODE BOUNDING BOXES? 

 

As I mentioned earlier, bx, by, bh, and bw are 

calculated relative to the grid cell we are dealing with. Let’s 

understand this concept with an example. Consider the center-

right grid which contains a car: 

 

 
 

So, bx, by, bh, and bw will be calculated relative to this 

grid only. The y label for this grid will be: 

 

 
 

pc = 1 since there is an object in this grid and since it 

is a car, c2 = 1. Now, let’s see how to decide bx, by, bh, and bw. 

In YOLO, the coordinates assigned to all the grids are: 

 

 
 

bx, by are the x and y coordinates of the midpoint of 

the object with respect to this grid. In this case, it will be 

(around) bx = 0.4 and by = 0.3: 

 

 
 

bh is the ratio of the height of the bounding box (red 

box in the above example) to the height of the corresponding 

grid cell, which in our case is around 0.9. So,  bh = 0.9. bw is 

the ratio of the width of the bounding box to the width of the 

grid cell. So, bw = 0.5 (approximately). The y label for this 

grid will be: 
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Notice here that bx and by will always range between 

0 and 1 as the midpoint will always lie within the grid. 

Whereas bh and bw can be more than 1 in case the dimensions 

of the bounding box are more than the dimension of the grid. 

 

V. EXPERIMENTS 

 

A. Dataset:  

 

We evaluate the enhanced CNN model over the 

KITTI 2D object detection benchmark dataset. The dataset 

contains 300 images with 260 for training and 290 for testing. 

The image size is 384 1280 pixels. There are over 80000 

annotated objects, which are divided into three categories (car, 

pedestrian and cyclist). Three object detection evaluation 

categories (“Easy”, “Moderate” and “Hard”) are set up for 

each object class, according to object height, occlusion and 

truncation level, which are presented in Table I. For 

evaluation, average precision (AP) with different IoU 

thresholds (0.7 for car, 0.5 for pedestrian and cyclist) is used 

as the main metric of interest. The AP is computed as the 

mean precision at a set of equally spaced recall levels. 

 

B. Implementation Details 

 

As a widely adopted practice, the proposed network 

is fine-tuned on the reduced VGG-16 model, which is pre-

trained on the ILSVRC CLS-LOC dataset. We split the raw 

training dataset into training set and validation set for local 

performance evaluation. As the number of samples for 

different object classes are highly imbalanced, detectors are 

trained separately for detection of cars and pedestrians. The 

training procedure consists of two stages. In the first stage, 

only the proposal network is trained by 10000 iterations, with 

weight term of 0.05, initial learning rate of 0.00005, 

momentum of 0.9, weight decay of 0.0005. Following the 

proposal network training, in the second stage the whole 

network (including both proposal network and detection 

network) is trained for another 25000 iterations. The learning 

rate for the second stage is initially set to 0.0005 and is 

divided by 10 every 10000 iterations. The weight term is the 

experiments are run with an Intel i7-7700k 4.20GHz server 

with 8 CPU cores and 32 GB memory and a NVidia GeForce 

GTX 1080 GPU. Training time ranges from 6 to 10 hours for 

the models used in this paper.In addition to the various 

network enhancements, input layer image size impact is also 

investigated. We train the network with 3 input image sizes, 

small image 384 1280 (the original image size), medium 

image 576 1920 and large image 768 2560. The enlargement 

of images does not increase image resolution. The experiments 

carried out with different input image size are denoted by the 

object class and the input image height. For example, 

experiments for car detection with image size 384 1280 are 

denoted by “Car-384”. Anchor sizes are set differently for 

different types of experiments. The anchor and associated 

filter size configurations for different image sizes and different 

object classes. Note that the other parameters are kept 

unchanged through all the experiments. we examine and 

compare the performance of the proposed CNN enhancements 

for object detection over KITTI benchmark dataset. As the 

ground truth of the KITTI test set is not publicized and only 

one submission of the KITTI test results to the benchmark 

website is allowed, performance comparison of the proposed 

enhancements is performed over the KITTI training and 

validation set. 

 

TABLE 1 PERFORMANCE COMPARISON OF RECENT 

PUBLISHED WORKS AND OUR METHOD ON THE TEST 

SET. 

 
 

leader board ranks the approaches based on the AP 

for “Moderate” detection category, we select the network 

“M+AR+S” with large image size (768 2560) for competition, 

which produced the best AP for “Moderate”category over 

validation set. The results are submitted to the KITTI test set 
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evaluation server.The AP and inference time results of our 

proposed method and other top ranked published approaches 

are presented in Table1. While the original CNN models 

(Faster-RCNN, SSD and YOLOv2) without adaption to the 

KITTI datasets have much lower object detection performance 

over KITTI test set, they are also listed in Table1 for 

information.A simple comparison of our own results on KITTI 

test data set to those on validation test shows that there are 

considerable performance loss possibly due to harder images 

in the test set. However similar performance loss was 

observed for the baseline MS-CNN model.According to the 

object detection results presented in Table and in KITTI 

benchmark website, it can be observed that the car detection 

performance for category “Moderate” is almost saturated with 

very little performance gap over the top 20 detection methods. 

However, there is still large performance improvement space 

for pedestrian and cyclist detection. For example the highest 

AP from the published works is 85.12% and 75.33% for 

pedestrian category “Easy” and “Moderate”, respectively. 

 

 
Fig7. Input 

 

 
Fig8.Output 

 

The main challenges of the pedestrian and cyclist 

detection still come from the small size, heavy occlusion or 

truncation of the objects. In addition other external factors like 

illumination change and cluttered background can affect the 

accuracy of our detection method. And compared to the 

number of car samples in the KITTI dataset, the number of 

pedestrian and cyclist samples are much smaller, which may 

be another cause of the relatively poor detection performance 

for pedestrian detection. 

 

VI. CONCLUSION 

 

Real time accurate object detection is one of the most 

critical problems for advanced driving assistance systems 

(ADAS) and autonomous driving. Recently convolutional 

neural networks (CNN) achieved huge successes on visual 

object detection over traditional object detectors, which use 

hand-engineered features. However, due to the challenging 

driving environment (e.g., large object scale variation, object 

occlusion and bad light conditions), popular CNN detectors 

including Faster-RCNN and SSD do not produce good 

detection performance over the KITTI driving benchmark 

dataset. Inthis paper we proposed three enhancements on a 

multiple scale CNN network model for ADAS object 

detection. Firstly, CNN feature maps deconvolution and fusion 

was proposed to add context and deeper features for better 

object detection at lower scale of feature maps, to address the 

large object scale variation challenge. Then, soft non-maximal 

suppres-sion (NMS) was applied across object proposals at 

different image scales to address the object occlusion 

challenge. As the cars and pedestrians have distinct aspect 

ratio features, we measured their aspect ratio statistics and 

exploited them to set anchor boxes properly for better object 

matching and localization. The proposed CNN enhancements 

with various input image sizes were individually and jointly 

evaluated by extensive experiments over KITTI dataset. The 

effectiveness of the proposed enhancements was verified by 

experiment results with improved or comparable detection 

performance over KITTI test set. The average precision (AP) 

for pedestrian detection category “Easy” and the computation 

speed rank the first among the published works, the second for 

pedestrian category “Moderate” and “Hard”, the third for car 

category “Moderate”. And the network inference time for cars 

per 384 1280 image is only 0.08 second, much faster than the 

other top ranked published methods in KITTI leader board. In 

our future works we will investigate more CNN models and 

enhancements to improve object detection for safe and 

intelligent transport. 
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