
IJSART - Volume 6 Issue 6 –JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 355 www.ijsart.com

A Novel Approach Determining Driving Assistance

Using Deep Convolutional Neural Networks

Sahana G M1, Sahana M2, Suma R3, Varsha P 4, Mrs. Vidhya K5
1, 2, 3, 4Dept of Information Science and Engineering

5Asst.Prof,, Dept of Information Science and Engineering
1, 2, 3, 4, 5 East West Institute of Technology, Bangalore, India.

Abstract- Intelligent vehicle systems, such as advanced

driving assistance systems, are relatively popular nowadays,

which facilitate the timely prevention of driving-related

accidents and human injuries caused by impaired driving.

This paper presents a concept for testing camera based ADAS,

in order to reduce time and cost in the development phase. By

adapting an existing virtual environment for the camera

system, identifying and enhancing the important features for

the testing detection function. To address the large object

scale variation challenge, deconvolution and fusion of CNN

feature maps are proposed to add context and deeper features

for better object detection at low feature map scales. In

addition, soft non-maximal suppression (NMS) is applied

across object proposals at different feature scales to address

the object occlusion challenge. As the cars and pedestrians

have distinct aspect ratio features, we measure their aspect

ratio statistics and exploit them to set anchor boxes properly

for better object matching and localization.The proposed CNN

enhancements are evaluated with various image input sizes by

experiments over KITTI dataset. Experiment results

demonstrate the effectiveness of the proposed enhancements

with good detection performance over KITTI test set.

Keywords- Convolutional Neural Networks; KITTI Dataset.

I. INTRODUCTION

 Visual object detection is a long standing and

important research problem for computer vision, with a wide

range of real world applications. Advanced driver assistant

systems[1] have been implemented in many vehicles to help

increase both the safety of drivers and pedestrian. The related

technology is also used to develop self-driving cars. Three

features including traffic sign recognition, lane deviation

detection and car make identification in ADAS that our team

built. Traffic sign recognition is crucial to remind the drivers

the traffic signs ahead in order to prevent accidents caused by

the traffic sign ignorance in the bad weather condition. It can

be seen as another eyes to guarantee driving safety on the

road. Lane deviation detection system provides lane detection

and stability determination, giving drivers warning in the

condition that car drifting into directions out of lane. Car make

identification is a useful feature when drivers are interested in

the make and model of car in their front.Despite fast growth of

CNN in object detection over datasets with a large number of

object classes, real time visual object detection in driving

environment is still very challenging. It is observed that the

object detection performance of thepopular CNN detectors

including Faster-RCNN[7]. and SSD[6]without modification

is not very good over the KITTI benchmark datasets[1]. In the

existing multi-scale CNN models, feature map from feature

output scales are processed separately to predict existence of

objects at fixed scales. In this paper deconvolution of CNN

features is applied at smaller feature output scales, which is

further fused with features at larger feature output scales, to

provide richer context for object detection at individual feature

output scale. Such enhancement can effectively address the

large object scale variation challenge.The proposed CNN

enhancements are evaluated with various image input sizes by

experiments over KITTI dataset. Traffic sign recognition is

crucial to remind the drivers the traffic signs ahead in order to

prevent accidents caused by the traffic sign ignorance in the

bad weather condition. It can be seen as another eyes to

guarantee driving safety on the road. Lane deviation detection

system provides lane detection and stability determination,

giving drivers warning in the condition that car drifting into

directions out of lane. Car make identification is a useful

feature when drivers are interested in the make and model of

car in their front.The proposed CNN enhancements are

evaluated with various image input sizes by experiments over

KITTI benchmark dataset. Good detection performance

improvement is observed with both individual and combined

CNN enhancements. Com-pared to the published works over

KITTI benchmark test dataset our proposed method ranks the

first for pedestrian detection category “Easy” and second for

categories “Moderate and “Hard”, and is the fastest among the

top ten ranked published methods. The object detection time

with a GPU computer is 0.08 second per 384 1280 sized

image, which can satisfy the real time requirements of driving

safety applications.

IJSART - Volume 6 Issue 6 –JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 356 www.ijsart.com

II. ARCHITECTURE

Fig1. Proposed System Architecture

The input to the CNN is an image with size H W D,

where H and W denote image height and width in pixels, and

D denotes the number of color components.The architecture of

the proposed system contain an convolutional layer Max

polling and an fully connected layer . The input is given in the

form of an image which of matrix form once the input is given

goes to the convolutional layer were all the unwanted noise or

image will be filtered since the convolutional layer contain n

number of filters due to this layer the unwantedly recognized

image or noise will be removed. Further the output that has

come from the convolutional layer is taken as the input for

max polling layer which is responsible for categorizing the

picture of under which category it belongs to after completing

this operation or process the output from the max polling layer

or sub sampling layer is taken as input for again convolutional

layer these process continues for certain number of times and

finally comes to an fully connected layer which contains huge

number of data where the image is matched with each data

present in fully connected layer. Fully connected layer is also

known as SOFTMAX layer. The main building blocks of the

modified CNN model is presented in Fig.1. The baseline

network is MS-CNN, which detects candidate objects at

multiple feature output layers with different scales. To

differentiate from the MS-CNN, the proposed enhancements

are highlighted by red boxes in Fig.1. The proposed

enhancements to MS-CNN are general and are applicable to

other CNN models such as Faster-RCNN and SSD as well. As

this layer contain huge number of data or stores different

number of database the picture in this layer is been matched

with each and every data present in the layer . The final

outcome is taken by counting the number of matches found to

that particular picture or image , as we know that in machine

learning the values varies only from 0 - 1 the hence if the

matching count is of 0.95 this value will be considered as the

final value or the outcome of the image and the category of the

image will be identified of type is the image been found. As

shown in the architecture each frame contain n number of

layers which helps us to get an accurate value for the image

and as checks the accuracy of the image given in the input.

The object detection network has a region of interest

pooling layer and a fully connected (FC) layer. The outputs of

upsampled feature maps from the lowest output feature layer

(i.e. “conv4-3”) and object proposals from soft-NMS building

block in the proposal networks are used as input to the

detection networks. The pooling layer extracts the feature

maps of the object proposals using these inputs. The feature

maps are upsampled twice to improve the capacity for

location-aware bounding box regression. Then a fully

connected layer maps the feature maps into fixed vectors for

classification and bounding box regression.

. Fig2. Feature fusion method for deconvolution building

block (DBB).

CNN exploits multi-scale features to produce predic-

tions of different scales, which showed improved object

detection performance over Faster-CNN[7] and SSD[6] for

KITTI datasets[1]. It is a good idea to use the feature maps at

larger scales (lower CNN layers) with smaller receptive fields

to detect smaller objects and those in smaller scales (higher

layers) to detect larger objects. However, shallow feature

maps from the low layers of feature pyramid inherently lack

fine semantic information for object recognition. There is an

opportunity to augment the shallow feature maps with deeper

feature maps from higher feature output layers and improve

detection performance.

We propose to add DBB to the baseline MS-CNN

model, with additional deconvolution layers and lateral

connections to aggregate feature outputs from different layers.

Using DBBs the semantics from higher layers can be

conveyed into lower layers to increase the representation

capacity. There are three DBBs used in the proposed CNN

model. Fig.2 illustrates the architecture of the DBB used in

this paper, which connects one feature output layer with its

adjacent higher layer counterpart. Specifically, we first

connect a convolution layer. with 512 1 1 filters to an output

feature layer as shown in the Fig. 2. In addition, in the

horizontal direction, a deconvolution layer (“Deconv 4 4 512”)

with 512 4 4 filters is applied to upsample the corresponding

higher-level feature maps. Then the outputs of these two

associated feature layers, which have the same spatial size and

IJSART - Volume 6 Issue 6 –JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 357 www.ijsart.com

depth, are merged by element-wise sum and processed by a

ReLU layer to produce a new output feature layer. In order to

maintain feature aggregation consistence, the number of

channels is set to 512 in all DBBs.

There are many possible architecture designs for

DBBs. For example, for a given feature output layer, the

output feature maps can be merged with those from both

higher layers and lower layers. However the computation

complexity and memory requirement can be increased

significantly. We examined and compared several alternative

DBB architectures, some using element-wise multiplication or

concatenation instead of element-wise sum used in this paper,

and some adding a batch normalization function block after

the convolution and deconvolution layers in the DBB as

shown in Fig. 3. However, according to results from extensive

experiments, it is found that the implementation shown in Fig.

3 has the best detection performance and low computation

complexity. The results demonstrated that the design of DBB

is not straightforward and specific consideration should be

taken for different baseline CNN models.

Fig. 3. Example of overlapped proposals.

In many object detection challenge datasets neighbor

proposals usually correspond to the same object. But due to

heavy object occlusion in KITTI data set, NMS may remove

positive proposals unexpectedlyproposals from an image with

large overlap inFig.3. The proposal for the occluded back car

may be removed with high probability by the traditional NMS

method. To address the NMS issue with occluded objects, we

apply soft-NMS for suppression of overlapped objects. With

soft-NMS the neighbor proposals of a winning proposal are

not completely suppressed. Instead they are suppressed

according to updated objectiveness scores of the neighbor

proposals, which are computed according to the overlap level

of the neighbor proposals and the winning proposal. NMS can

be viewed as a specific case of soft-NMS, in which the

updated objectiveness scores of the neighbor proposals of a

winning proposal are simply set to zero.

III. RELATED WORK

the size of the array will be 300x300x3. Where 300 is

width, next 300 is height and 3 is RGB channel values. The

computer is assigned a value from 0 to 255 to each of these

numbers. Тhis value describes the intensity of the pixel at each

point, the image is passed through a series of convolutional,

nonlinear, pooling layers and fully connected layers, and then

generates the output.

Fig 4. Input Neurons

In recent years, deep learning techniques are

achieving state-of-the-art results for object detection, such as

on standard benchmark datasets and in computer vision

competitions. Notable is the “You Only Look Once,” or

YOLO, family of Convolutional Neural Networks that achieve

near state-of-the-art results with a single end-to-end model

that can perform object detection in real-time.

Yolo-You Only Look OnceAlgorithms based on

classification. They are implemented in two stages. First, they

select regions of interest in an image. Second, they classify

these regions using convolutional neural networks.

The biggest advantage of using YOLO is its superb speed –

 it’s incredibly fast and can process 45 frames per

second. YOLO also understands generalized object

representation.

 YOLO-based Convolutional Neural Network family

of models for object detection and the most recent

variation called YOLOv3.

IJSART - Volume 6 Issue 6 –JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 358 www.ijsart.com

 The best-of-breed open source library

implementation of the YOLOv3 for the Keras deep

learning library.

 How to use a pre-trained YOLOv3 to perform object

localization and detection on new photographs

Object detection

To explore the concept of object detection it is useful

to begin with image classification. It goes through levels of

incremental complexity.

Fig 5. Classification and object detection

Image classification (1) aims at assigning an image to one of

a number of different categories (e.g. car, dog, cat, human,

etc.), essentially answering the question “What is in this

picture?”. One image has only one category assigned to it.

Object localization (2) then allows us to locate our object in

the image, so our question changes to “What is it and where it

is?”.

In a real real-life scenario, we need to go beyond locating just

one object but rather multiple objects in one image. For

example, a self-driving car has to find the location of other

cars, traffic lights, signs, humans and to take appropriate

action based on this information.

Object detection (3) provides the tools for doing just that –

finding all the objects in an image and drawing the so-

called bounding boxes around them. There are also some

situations where we want to find exact boundaries of our

objects in the process called instance segmentation, but this

is a topic for another post.

To understand the YOLO algorithm, it is necessary to

establish what is actually being predicted. Ultimately, we aim

to predict a class of an object and the bounding box specifying

object location. Each bounding box can be described using

four descriptors:

1. center of a bounding box (bxby)

2. width (bw)

3. height (bh)

4. value cis corresponding to a class of an object (such

as: car, traffic lights, etc.).

In addition, we have to predict the pc value, which is

the probability that there is an object in the bounding box.

Here,

 pc defines whether an object is present in the grid or

not (it is the probability)

 bx, by, bh, bw specify the bounding box if there is an

object

 c1, c2, c3 represent the classes. So, if the object is a

car, c2 will be 1 and c1 & c3 will be 0, and so on

Fig 6 Detection

As we mentioned above, when working with the

YOLO algorithm we are not searching for interesting regions

in our image that could potentially contain an object.

Instead, we are splitting our image into cells,

typically using a 19×19 grid. Each cell is responsible for

predicting 5 bounding boxes (in case there is more than one

object in this cell). Therefore, we arrive at a large number of

1805 bounding boxes for one image.

How does the YOLO Framework Function?

 YOLO first takes an input image:

IJSART - Volume 6 Issue 6 –JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 359 www.ijsart.com

 The framework then divides the input image into

grids (say a 3 X 3 grid):

 Image classification and localization are applied on

each grid. YOLO then predicts the bounding boxes

and their corresponding class probabilities for objects

Let’s break down each step to get a more granular

understanding of what we just learned.We need to pass the

labelled data to the model in order to train it. Suppose we have

divided the image into a grid of size 3 X 3 and there are a total

of 3 classes which we want the objects to be classified into.

Let’s say the classes are Pedestrian, Car, and Motorcycle

respectively. So, for each grid cell, the label y will be an eight

dimensional vector:

Here,

 pc defines whether an object is present in the grid or

not (it is the probability)

 bx, by, bh, bw specify the bounding box if there is an

object

 c1, c2, c3 represent the classes. So, if the object is a

car, c2 will be 1 and c1 & c3 will be 0, and so on

Let’s say we select the first grid from the above example:

Since there is no object in this grid, pc will be zero and the y

label for this grid will be:

Here, ‘?’ means that it doesn’t matter what bx, by, bh,

bw, c1, c2, and c3 contain as there is no object in the grid. Let’s

take another grid in which we have a car (c2 = 1):

Before we write the y label for this grid, it’s

important to first understand how YOLO decides whether

there actually is an object in the grid. In the above image,

IJSART - Volume 6 Issue 6 –JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 360 www.ijsart.com

there are two objects (two cars), so YOLO will take the mid-

point of these two objects and these objects will be assigned to

the grid which contains the mid-point of these objects. The y

label for the centre left grid with the car will be:

Since there is an object in this grid, pc will be equal to

1. bx, by, bh, bw will be calculated relative to the particular grid

cell we are dealing with. Since car is the second class, c2 = 1

and c1 and c3 = 0. So, for each of the 9 grids, we will have an

eight dimensional output vector. This output will have a shape

of 3 X 3 X 8.

So now we have an input image and it’s

corresponding target vector. Using the above example (input

image – 100 X 100 X 3, output – 3 X 3 X 8), our model will

be trained as follows:

IV. HOW TO ENCODE BOUNDING BOXES?

As I mentioned earlier, bx, by, bh, and bw are

calculated relative to the grid cell we are dealing with. Let’s

understand this concept with an example. Consider the center-

right grid which contains a car:

So, bx, by, bh, and bw will be calculated relative to this

grid only. The y label for this grid will be:

pc = 1 since there is an object in this grid and since it

is a car, c2 = 1. Now, let’s see how to decide bx, by, bh, and bw.

In YOLO, the coordinates assigned to all the grids are:

bx, by are the x and y coordinates of the midpoint of

the object with respect to this grid. In this case, it will be

(around) bx = 0.4 and by = 0.3:

bh is the ratio of the height of the bounding box (red

box in the above example) to the height of the corresponding

grid cell, which in our case is around 0.9. So, bh = 0.9. bw is

the ratio of the width of the bounding box to the width of the

grid cell. So, bw = 0.5 (approximately). The y label for this

grid will be:

IJSART - Volume 6 Issue 6 –JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 361 www.ijsart.com

Notice here that bx and by will always range between

0 and 1 as the midpoint will always lie within the grid.

Whereas bh and bw can be more than 1 in case the dimensions

of the bounding box are more than the dimension of the grid.

V. EXPERIMENTS

A. Dataset:

We evaluate the enhanced CNN model over the

KITTI 2D object detection benchmark dataset. The dataset

contains 300 images with 260 for training and 290 for testing.

The image size is 384 1280 pixels. There are over 80000

annotated objects, which are divided into three categories (car,

pedestrian and cyclist). Three object detection evaluation

categories (“Easy”, “Moderate” and “Hard”) are set up for

each object class, according to object height, occlusion and

truncation level, which are presented in Table I. For

evaluation, average precision (AP) with different IoU

thresholds (0.7 for car, 0.5 for pedestrian and cyclist) is used

as the main metric of interest. The AP is computed as the

mean precision at a set of equally spaced recall levels.

B. Implementation Details

As a widely adopted practice, the proposed network

is fine-tuned on the reduced VGG-16 model, which is pre-

trained on the ILSVRC CLS-LOC dataset. We split the raw

training dataset into training set and validation set for local

performance evaluation. As the number of samples for

different object classes are highly imbalanced, detectors are

trained separately for detection of cars and pedestrians. The

training procedure consists of two stages. In the first stage,

only the proposal network is trained by 10000 iterations, with

weight term of 0.05, initial learning rate of 0.00005,

momentum of 0.9, weight decay of 0.0005. Following the

proposal network training, in the second stage the whole

network (including both proposal network and detection

network) is trained for another 25000 iterations. The learning

rate for the second stage is initially set to 0.0005 and is

divided by 10 every 10000 iterations. The weight term is the

experiments are run with an Intel i7-7700k 4.20GHz server

with 8 CPU cores and 32 GB memory and a NVidia GeForce

GTX 1080 GPU. Training time ranges from 6 to 10 hours for

the models used in this paper.In addition to the various

network enhancements, input layer image size impact is also

investigated. We train the network with 3 input image sizes,

small image 384 1280 (the original image size), medium

image 576 1920 and large image 768 2560. The enlargement

of images does not increase image resolution. The experiments

carried out with different input image size are denoted by the

object class and the input image height. For example,

experiments for car detection with image size 384 1280 are

denoted by “Car-384”. Anchor sizes are set differently for

different types of experiments. The anchor and associated

filter size configurations for different image sizes and different

object classes. Note that the other parameters are kept

unchanged through all the experiments. we examine and

compare the performance of the proposed CNN enhancements

for object detection over KITTI benchmark dataset. As the

ground truth of the KITTI test set is not publicized and only

one submission of the KITTI test results to the benchmark

website is allowed, performance comparison of the proposed

enhancements is performed over the KITTI training and

validation set.

TABLE 1 PERFORMANCE COMPARISON OF RECENT

PUBLISHED WORKS AND OUR METHOD ON THE TEST

SET.

leader board ranks the approaches based on the AP

for “Moderate” detection category, we select the network

“M+AR+S” with large image size (768 2560) for competition,

which produced the best AP for “Moderate”category over

validation set. The results are submitted to the KITTI test set

IJSART - Volume 6 Issue 6 –JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 362 www.ijsart.com

evaluation server.The AP and inference time results of our

proposed method and other top ranked published approaches

are presented in Table1. While the original CNN models

(Faster-RCNN, SSD and YOLOv2) without adaption to the

KITTI datasets have much lower object detection performance

over KITTI test set, they are also listed in Table1 for

information.A simple comparison of our own results on KITTI

test data set to those on validation test shows that there are

considerable performance loss possibly due to harder images

in the test set. However similar performance loss was

observed for the baseline MS-CNN model.According to the

object detection results presented in Table and in KITTI

benchmark website, it can be observed that the car detection

performance for category “Moderate” is almost saturated with

very little performance gap over the top 20 detection methods.

However, there is still large performance improvement space

for pedestrian and cyclist detection. For example the highest

AP from the published works is 85.12% and 75.33% for

pedestrian category “Easy” and “Moderate”, respectively.

Fig7. Input

Fig8.Output

The main challenges of the pedestrian and cyclist

detection still come from the small size, heavy occlusion or

truncation of the objects. In addition other external factors like

illumination change and cluttered background can affect the

accuracy of our detection method. And compared to the

number of car samples in the KITTI dataset, the number of

pedestrian and cyclist samples are much smaller, which may

be another cause of the relatively poor detection performance

for pedestrian detection.

VI. CONCLUSION

Real time accurate object detection is one of the most

critical problems for advanced driving assistance systems

(ADAS) and autonomous driving. Recently convolutional

neural networks (CNN) achieved huge successes on visual

object detection over traditional object detectors, which use

hand-engineered features. However, due to the challenging

driving environment (e.g., large object scale variation, object

occlusion and bad light conditions), popular CNN detectors

including Faster-RCNN and SSD do not produce good

detection performance over the KITTI driving benchmark

dataset. Inthis paper we proposed three enhancements on a

multiple scale CNN network model for ADAS object

detection. Firstly, CNN feature maps deconvolution and fusion

was proposed to add context and deeper features for better

object detection at lower scale of feature maps, to address the

large object scale variation challenge. Then, soft non-maximal

suppres-sion (NMS) was applied across object proposals at

different image scales to address the object occlusion

challenge. As the cars and pedestrians have distinct aspect

ratio features, we measured their aspect ratio statistics and

exploited them to set anchor boxes properly for better object

matching and localization. The proposed CNN enhancements

with various input image sizes were individually and jointly

evaluated by extensive experiments over KITTI dataset. The

effectiveness of the proposed enhancements was verified by

experiment results with improved or comparable detection

performance over KITTI test set. The average precision (AP)

for pedestrian detection category “Easy” and the computation

speed rank the first among the published works, the second for

pedestrian category “Moderate” and “Hard”, the third for car

category “Moderate”. And the network inference time for cars

per 384 1280 image is only 0.08 second, much faster than the

other top ranked published methods in KITTI leader board. In

our future works we will investigate more CNN models and

enhancements to improve object detection for safe and

intelligent transport.

REFERENCES

[1] Geiger, P. Lenz, and R. Urtasun, “Are we ready for

autonomous driving? the kitti vision benchmark suite,” in

Computer Vision and Pattern Recognition (CVPR), 2012

IEEE Conference on, pp. 3354–3361, IEEE, 2012.

IJSART - Volume 6 Issue 6 –JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 363 www.ijsart.com

[2] M. Everingham, L. Van Gool, C. K. Williams, J. Winn,

and A. Zisser-man, “The pascal visual object classes (voc)

challenge,” International journal of computer vision, vol.

88, no. 2, pp. 303–338, 2010.

[3] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D.

Ramanan, P. Dollar,´ and C. L. Zitnick, “Microsoft coco:

Common objects in context,” in European conference on

computer vision, pp. 740–755, Springer, 2014.

[4] P. Felzenszwalb, R. B. Girshick, and D. McAllester,

“Cascade object detection with deformable part models,”

In CVPR, pp. 2241-2248, 2010.

[5] Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,”

In NIPS, pp. 1097-1105, 2012.

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn:

Towards real-time object detection with region proposal

networks,” in Advances in neural information processing

systems, pp. 91–99, 2015.

[7] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-

Y. Fu, and A. C. Berg, “Ssd: Single shot multibox

detector,” in European conference on computer vision, pp.

21–37, Springer, 2016.

[8] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A

unified multi-scale deep convolutional neural network for

fast object detection,” in European Conference on

Computer Vision, pp. 354–370, Springer, 2016.

[9] N. Dalal and B. Triggs, “Histograms of oriented gradients

for human detection,” in Computer Vision and Pattern

Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on, vol. 1, pp. 886–893, IEEE, 2005.

[10] P. Dollar,´ Z. Tu, P. Perona, and S. Belongie, “Integral

channel features,” 2009.

[11] P. Dollar,´ R. Appel, S. Belongie, and P. Perona, “Fast

feature pyramids for object detection,” IEEE Transactions

on Pattern Analysis and Ma-chine Intelligence, vol. 36,

no. 8, pp. 1532–1545, 2014.

[12] Q. Hu, S. Paisitkriangkrai, C. Shen, A. van den Hengel,

and F. Porikli, “Fast detection of multiple objects in

traffic scenes with a common detection framework,”

IEEE Transactions on Intelligent Transportation Systems,

vol. 17, no. 4, pp. 1002–1014, 2016.

[13] R. N. Rajaram, E. Ohn-Bar, and M. M. Trivedi, “Looking

at pedestrians at different scales: A multiresolution

approach and evaluations,” IEEE Transactions on

Intelligent Transportation Systems, vol. 17, no. 12, pp.

3565–3576, 2016.

[14] X. Yuan, S. Su, and H. Chen, “A graph-based vehicle

proposal location and detection algorithm,” IEEE

Transactions on Intelligent Transporta-tion Systems,

2017.

[15] R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W.

Smeulders, “Selective search for object recognition,”

International journal of com-puter vision, vol. 104, no. 2,

pp. 154–171, 2013.

[16] L. Zitnick and P. Dollar,´ “Edge boxes: Locating object

proposals from edges,” in European Conference on

Computer Vision, pp. 391– 405, Springer, 2014.

