
IJSART - Volume 5 Issue 6 –JUNE 2019                                                                                              ISSN  [ONLINE]: 2395-1052 
 

Page | 500                                                                                                                                                                     www.ijsart.com 

 

An Emulation of SQLIA Detection, Prevention Using 

Pattern Based and Supervised Machine Learning 

Model 
 

          Mr.Bhushan R.Thakare
1
, Prof.Sharad M.Rokade

2
, Prof.Devidas S.Thosar 

3
 

        Department of Computer  Engineering 
        1,2,3 Sir Visvesvaraya Institute of Technology, Nashik, India 

 

Abstract- Most of the web applications are associated with 

database as back-end so there are promises of SQL injection 

attacks (SQLIA) on it. Even SQLIA is among top ten attacks 

according to Open Web Application Security Project 

(OWASP) but still methods are not able to give appropriate 

solution to this problem. Numbers of methods are also 

discovered to overcome this attack, but which measure is more 

appropriate and can also provide fast access to application 

without conceding the security is also a major concern. Some 

existing approaches are good in security but they are not 

effective to handle large user’s requests. In SQLIA, hacker can 

obtain the advantage of poor input authentication and weak 

coded web application. Due to the successful implementation 

of a SQLIA, integrity and confidentiality of data are lost which 

results in the degrading organization’s market value. In 

proposed framework given query will pass over two phases. 

The two phases are pattern based and machine learning 

based. As well database firewall will be there for checking 

incoming SQL queries. If the given query passes all this 

phases, then only query is valid otherwise there is attack. The 

approach usage a patterns and machine learning models in 

which value is entered for every field is checked for SQLIA by 

parsing it. Proposed model also detected static and dynamic 

attacks.  

 
Keywords- SQLIA, OWASP, Machine learning, SQL 

Injection, web application, Static Attacks, Dynamic Attacks 

 

I. INTRODUCTION 

 

 With the rapid growth of internet, web applications 

are becoming progressively popular and web application 

database gaining more and more value. Preventing attacks 

become an important for developers to protect database. Here, 

the main point is what was attacked or from where and find a 

way to prevent it. SQL injection attack is a code injection 

practise which is commonly used to attack the trusted data by 

injecting malicious SQL queries as input in entry field for 

execution. [2] 

 

SQL injection attack (SQLIA) pose a serious security 

risk to the database driven web applications. SQLIAs are 

possible due insufficient input validation or improper creation 

of SQL statements in web applications. According to the 

OWASP and CWE/SANS, SQLIAs are the number one threat 

to web applications. This type of attack does not use any 

system resources but through nasty actions the hacker is able 

to retrieve/insert unauthorized data from/into the primary 

database.[6] 

 

There are numerous types of SQLIA’s and each has 

different approach, intent and significances. The different 

types of attacks are generally performed by the attacker; many 

of them are used together or successively, depending on the 

specific goals of the attacker. The most common types of 

SQLIAs include, tautology, illegal/logically incorrect queries, 

union, piggy-backed queries, and stored procedures.[5] 

 

        The main aim of this paper is to present a combined 

method which is a combination of static and dynamic 

methods, for the detection and prevention of SQLIA. The 

method is designed to decrease the vulnerability of the web 

applications. 

 

II. LITERATURE SURVEY 

 

A. Detection of SQL Injection Attacks by Removing the 

Parameter Values of SQL Query 

 

 In this paper method of query processing and 

parameter removal are collectively used to give a method 

which detects the difference between the original SQL query 

and the modified i.e. injected SQL query via the parameters. 

Evolution of methods from web application generation to web 

application security is making the web applications more 

secure and robust. Removing the parameters and comparing 

them with the original query structure will improve the 

performance of the system. [1] 

 

B. A second-order SQL injection detection method 

 

The first-order SQL injection load attack payload 

directly to the SQL query, but the attack method of second-

order SQL injection is divided into 2 stages, namely the stage 



IJSART - Volume 5 Issue 6 –JUNE 2019                                                                                              ISSN  [ONLINE]: 2395-1052 
   

Page | 501                                                                                                                                                                     www.ijsart.com 

 

of loading attack payload to database or file system and the 

stage of building the SQL query statement with the attack 

payload from database or file system. 

 

For example, the common function of user 

registration and user information alteration in Web application 

can carry out an second-order SQL injection attack, the user 

registration function loads the attack payload to the database, 

and then the user information modification function extract the 

attack payload from database to construct a SQL database 

query, which will cause a second-order SQL injection.[3] 

 

C. An Emulation of SQL Injection Disclosure 

&Deterrence  

 

The system offers a methodology in which the input 

query is first divided using Heisenberg analysis and each 

block of the query is stored in the database. Heisenberg 

analysis [4] helps to divide the SQL query into each block and 

then compare the same with the constrained predefined query. 

 

         For example if a query like “SELECT * FROM 

USER  WHERE USRNM=’uname’ AND PASS=’pwd’;” is  

partitioned using Heisenberg analysis then output occurs: 

SELECT”,”*”,”FROM”,”USER”,”WHERE”,”USRNM”,”=”, 

”’uname’”,”AND”,“PASS”, When a user try to login, while he 

enters the username and password the new query with entered 

values are divided into blocks and each block is confirmed 

with the old constrained query blocks. In order to perform 

verification, predefined query is divided, stored and matched 

with the constrained user query using Heisenberg analysis, so 

that those user queries following that matching properties are 

only granted access. 

 

         After confirmation if each query block matches, then the 

login is successfully done. Otherwise, error detection is done 

and access is denied. If the query does not match with any 

query block, then the login is blocked. 

 

D. SQL Injection: - Study and Augmentation 

 

          There are various methods used to insert malicious code 

into database. Some of the common techniques used are:- 

 

1) Through user input: In this, the attacker inserts 

nasty code by producing user input. The attacker 

simply inserts the code with typical SQL Query 

which goes unseen by the DBA resulting in 

illegal access of data. 

 

2) Second order Injection: In this attack, the nasty 

codes are planted into the databases to indirectly 

trigger a SQLIA at some later time. 

 

E. TYPES OF SQLIA 

 

In the literature, SQLIAs have been categorized 

based on the way the attack is performed and the purpose of 

the attack. In this section, we summarize the most common 

types of attacks associated to our research. For each attack 

type, we present attack aims, details of the attack, an attack 

example, and references to research papers that discuss the 

attack technique in more detail.[2][5]. The attack can be static 

or dynamic. 

 

Following queries present the static SQLIA attacks: 

Static or Embedded SQLIAs are SQL statements in an 

application that do not change at runtime. 

 

a) Tautology 

 

The major objective of such attacks is to insert nasty 

code into more than one conditional statement that they 

always authenticate to true. It is mostly used to bypass 

authentication. The aim of this attack is injection of more than 

one conditional statement so that their assessment is always 

true. 

 

A generally used statement which always returns true 

is 1=1. This means by appending “or 1= 1” to the original 

query statement, the result of the query will be always true. 

For example, the below query is designed to return the record 

of the employee whose employee id is 9890. SELECT * from 

employee WHERE emp_id =9890; 

After injecting “1=1”, the above query will look like: 

SELECT * from employee WHERE emp_id =9890 or 1=1;[7] 

 

b) Illegal/Logically Incorrect Queries. 

 

The intent of this attack is to detect injectable 

Parameters, perform database finger-printing, and extract 

trusted data. This type of attack is based on writing query 

statement that produces error messages. When a query is 

rejected, an error message is returned from the database 

including useful debugging information which helps the 

attacker. In the example below, attacker’s goal is to cause a 

type conversion error that can reveal relevant data:[4][6] 

 

Query: SELECT * FROM user WHERE id=’110’ 

AND password=’1234’ AND CONVERT(char, no) --’; 

 

c) Union Query 



IJSART - Volume 5 Issue 6 –JUNE 2019                                                                                              ISSN  [ONLINE]: 2395-1052 
   

Page | 502                                                                                                                                                                     www.ijsart.com 

 

 

This type of attack is mostly used to bypass the 

Authentication process [7] and to extract data by inserting the 

union operator to the normal query. The following example in 

which the SQLIAs could taint the text “’ UNION as: 

 

SELECT * from accounts WHERE id=’12’UNION 

select * from credit_card WHERE user=’admin’--’ and 

pass=’pass’ 

 

In this example the second query is nasty because the 

text following ‘—‘is disregarded as it becomes comment for 

the SQL Parser. However, if the query is executed, the 

attacker receives the credit card information. 

 

d) Piggy-Backed Query 

 

The purpose of this kind of attack is retrieval of 

information and DoS attack. This attack inserts nasty SQL 

queries into a normal SQL query.[2] It is possible because 

many SQL queries can be handled if the operator ‘‘;’’ is added 

after each query. As an example, consider the following query: 

 

SELECT customer_info from accounts WHERE 

login_id = ‘‘admin’’ AND pass = ‘1223’; DELETE FROM 

accounts WHERE CustomerName =’Akshada’; 

 

After executing the first query the query interpreter 

sees the ‘;’ and thus executes the second query with the first 

query. Since the second query is malicious, it will delete all 

the data of the customer ‘Akshada’. 

 

e) Stored Procedures 

 

A stored procedure is a method in which a user can 

store his own function that can be used as needed. In this type 

of attack, the attacker tries to execute stored procedures 

present in the database with malicious inputs. An example is 

shown query:[7] 

 

 CREATE PROCEDURE DBO @userName 

varchar2, @pass varchar2,AS EXEC ("SELECT * FROM user 

WHERE id=’" + @userName + "’ and password=’" + 

@password + "’); GO 

 

The  authorized/unauthorized  use  of  stored  

procedure returns true/false. If the nesty input SHUTDOWN; - 

-" for username or password on Stored Procedure. The Stored 

Procedure generates the following query statement which shut 

down the system. 

SELECT userName FROM user_Table WHERE userName = 

user_1 AND password=' '; SHUTDOWN; 

 

F. DYNAMIC ATTACKS 

 

The attack done on dynamic query is stated as 

dynamic attacks.[7] Dynamic SQL is SQL statements that are 

built at runtime.You can use dynamic SQL for the purpose of 

execute dynamic queries, whose full text is not known till the 

runtime.  

 

Consider the following query: SELECT * FROM 

Customers WHERE Country=$_POST['country'] AND 

City=$_POST['city']; 

 

The $_POST variable is used to collect values from a 

form with method="post".  

Information fixed from a form with the POST method is 

invisible to others and has no bounds on the amount of 

information to send.[7] 

 

Developers often use inputs in SQL statements 

without any checks. This is the most common and serious 

programming fault. For example, the following PHP code 

represents such a dynamic SQL statement. 

 

$query = “SELECT info FROM userdata WHERE 

name = ‘$_GET[“name”]’ AND pwd = ‘$_GET[“pwd”]’”; 

$_GET is the built in PHP super global array variable that is 

used to get values submitted via HTTP GET method.[7] 

 

               The array variable can be accessed from any script in 

the program; it has a global scope. This method shows the 

form values in the URL. 

 

Database Injection 

 

If the attacker has the ability to manipulate queries 

which are sent to the database, then he's able to inject a 

terminating character too [6]. Consider a following php script  

(database.php) which takes input from user and retrieves 

information from the database as follows:  

 

<?php 

 

$ID = $_GET['id']; 

$connect = mysql_connect("localhost","raj","rt123"); 

if (!$connect) 

 

{ 

die('Could not connect: ' . mysql_error()); 

} 

mysql_select_db("my_db", $connect); 

 



IJSART - Volume 5 Issue 6 –JUNE 2019                                                                                              ISSN  [ONLINE]: 2395-1052 
   

Page | 503                                                                                                                                                                     www.ijsart.com 

 

$resultq = mysql_query("SELECT fname FROM person 

WHERE id = $ID limit1;"); 

 

$row = mysql_fetch_array($resultq) or die(mysql_error()); 

echo $resultq; 

 

mysql_close($connect); 

?> 

 

Let's assume that the attacker has sent via the GET 

method the following data stored in variable $ID, consider the 

above URL:http://localhost:8888/database.php?id= 1 or 1=1; #  

The effect of above GET request is that the interpretation of 

the query will be stopped at the terminating character. In the 

end the final query form is:SELECT fname FROM person 

WHERE id = 1 or 1=1; # limit 1; After the # character 

everything will be rejected by the database including "limit 

1",so only the last column "fname" with all its records will be 

received as a query response. 

 

III. PROPOSED METHODOLOGY 

 

Before presenting the new method, let’s appearance 

at the architectural layers of web applications as shown in 

Figure 1 below. 

 

 
Fig.1. Different layers of Web Applications 

 

The Client layer indicates the user’s web browser 

which communicates with the server. The Presentation layer 

offers the graphical user interface (GUI) which shows the 

results of the user request. The CGI layer is responsible for 

management tasks at the server. The languages which are used 

in CGI layer are the server-based languages like ASP, PHP, 

etc. 

 

At the Database layer, the data related to the web 

application are saved and in case a demand from CGI is 

received, the proper result will be sent to the client. [2] 

 

As we discussed above, methods of detecting and 

preventing SQLIAs are either static which happens at the  

 

Database layer, or dynamic which happens at the CGI 

layer or combined method. 

 

A. Architecture 

 

Figure 2 shows proposed framework given query will 

pass over two phases. The two phases are pattern based and 

machine learning based. As well database firewall will be 

there for checking incoming SQL queries. 

 

          If the given query passes all this phases, then only 

query is valid otherwise there is attack. 

 

 
Fig.2. System Architecture 

 

The Proposed framework is basically divided into 

following entities and modules:- 

 

1) Client- The Client layer shows the user’s web 

browser which communicates with the server. 

 

2) Web Server- The languages which are used in this 

layer are the server-based languages like ASP, PHP, 

and so on. etc. At the Database layer, the data linked 

to the web application are saved and in case a request 

from CGI is received, the proper result will be sent to 

the client. 

 

3) DB Firewall- For increasing security of database, the 

firewall will be installed and used to avoid the 

SQLIA. It will helpful for detecting illegal queries. 



IJSART - Volume 5 Issue 6 –JUNE 2019                                                                                              ISSN  [ONLINE]: 2395-1052 
   

Page | 504                                                                                                                                                                     www.ijsart.com 

 

 

4) Machine Learning- Supervised learning is the 

machine learning task of learning a function that 

maps an input to an output based on example input-

output pairs. 

 

B. Algorithm 

 

N: Total number of fixed SQL Queries in web 

application  

 

FQi: i'th Fixed Query in web application 

 

DQi: Different types of queries from FQi FQ_array={FQ1, 

FQ2...FQn}, FDQ={FDQ1....FDQn} 

 

//Dynamic Analysis of Queries 

 

1. For each i=1 to N in FQ_array 

2. Get FQi 

3. FDQi=f(testArray(FQi)) 

4. if FDQi_total>0 then 

5. print Attack Detected 

6.else 

7.print Normal Query 

8.End if 

9.End {For} 

 

IV. RESULT AND DISCUSSIONS 

 

The mechanism is executed for real web application 

to detect and prevent the SQL injection attacks. It detects all 

SQL injection attack types. Figure 3 shows that the static 

attack detection page and figure 4 shows that the dynamic 

attack detection page.  

 
Fig. 3. Static Attack Detection Page 

 

 
Fig. 4. Dynamic Attack Detection page 

 

The evaluation for results is done on the basis of 

Dataset, Response time, Computing time and Detection Rate. 

 

 Dataset:- Figure 5 consists of normal as well as nasty 

(Malicious) queries. 

 

 Response time:- Figure 6 shows the response time of the 

system in handling the raised errors. The time to detect 

the SQL injection is considered for particular attack type. 

 

 
Fig. 5. Dataset for normal query and injected query For Static 

Attacks 

 

 



IJSART - Volume 5 Issue 6 –JUNE 2019                                                                                              ISSN  [ONLINE]: 2395-1052 
   

Page | 505                                                                                                                                                                     www.ijsart.com 

 

Fig.6. Response time of various Static attack types 

 

• Computing time: Figure7 shows the time required to 

compute the result of the normal query with respect to  

static injected query. 

 

 
Fig. 7. Computation time for normal query & 

Static injected query 

 

•Detection Rate: - Table-I gives statistics of detection rate. A 

total of 173 queries are issued for each SQLIA page out of 

which 160 are malicious and 13 are normal. Figure 8 shows 

the graph of static SQLIA detection rate and normal input 

(normal query) detection rate. 

 

TABLE I. Analysis of Static SQLIA and Normal query 

Detection rate 

 

    
   

   Web page  
 

                Analysis of detection 

rate  

Attacks 

Detected  

/ Malicious 

Input  

Attac

ks 

Detec

ted 

/Nor

mal 

input  

Detecti

on Rate 

(%)  

SQLIA page  160/160 13/1

3 

100 

Detect Page  160/160 13/1

3 

100 

Prevent 

page  

160/160 13/1

3 

100 

 

 
Fig.8. Analysis of Static SQLIA Detection Rate and 

Normal query Detection Rate. 

 

• Dataset:- Figure 9 consists of dynamic query-  

(Malicious query) 

 

 
Fig. 9. Dataset for Dynamic Attacks. 

• Computing time: Figure 10 shows the time required 

to compute the result of the dynamic injected query.  

 



IJSART - Volume 5 Issue 6 –JUNE 2019                                                                                              ISSN  [ONLINE]: 2395-1052 
   

Page | 506                                                                                                                                                                     www.ijsart.com 

 

 
Fig.10. Computation time for Dynamic injected query 

 

• Detection Rate: - Table-II gives statistics of 

detection rate. A total of 25 queries are issued for 

each SQLIA page. 

  

             Figure 11 shows the graph of dynamic SQLIA 

detection rate. 

 

TABLE II. Analysis of Dynamic SQLIA detection rate 

 

Web page 
  

Analysis of detection rate 

Attacks Detected 

/ Malicious Input 

Detection  Rate 

(%) 

SQLIA page 25/25 100 

Detect Page 25/25 100 

Prevent page 25/25 100 

 

 
Fig. 11. Analysis of Dynamic SQLIA Detection Rate 

 

V. CONCLUSION 

 

 In this paper we proposed three stage frameworks for 

detection and prevention of SQLIA attacks. As the popularity 

of web application increasing, the security of web application 

is major problem. SQL Injection attacks are the exorbitant and 

dangerous attacks on web applications: it is a code injection 

technique that allows attackers to take unrestricted access to 

the databases and potentially slight information like 

usernames, passwords, email ids, credit card details present in 

them. It covers the wide-ranging introduction to SQL injection 

attacks and their types. As well the literature review present 

the various ideas proposed by various researchers in the field 

of SQL injection. Then the various purposes of SQL injection 

attack are explained. The proposed approach usage a patterns 

and machine learning models in which value is entered for 

every field is checked for SQLIA by parsing it and static and 

dynamic attacks are covered. 

 

ACKNOWLEDGEMENT 

 

          I am colossally gratifying to Dr. K. T. V. Reddy, 

Principal, Sir Visvesvaraya Institute of Technology (SVIT), 

Nashik for inspiring me towards this and for implausible 

backing and leadership too. As well we prolong obligations 

towards Prof. Shedge K. N. (Asst.Professor), HOD M. Tech 

(CSE) of Computer Engineering Department, Prof. Thosar D. 

S., Assistant Professor and M.E Coordinator and Staff 

Members for their appreciated Assistance and Provision. 

 

REFERENCES 

 
[1] Rajashree   A.     Katole,   Dr.   Swati S. Sherekar,    Dr. Vilas   

M.Thakare, SGBAU, Amravati, Maharashtra, India. Detection  

of SQL Injection Attacks by Removing the Parameter Values  

of SQL Query 978-1-5386-0807-4/18/c 2018 IEEE  

 

[2] Mr. B.R.Thakare, Prof. D.S.Thosar- A Novel 3 Stage Hybrid  

Framework for SQLIA Detection, Prevention Using Pattern  

Based and Supervised Machine Learning Model- 

www.ijariie.com  

 

[3] Chen Ping-A second-order SQL injection detection method 

978-1-5090-6414-4/17/2017 IEEE  

 

[4] SaiLekshmi A S,Devipriya V S- An Emulation of SQL Injection 

Disclosure and Deterrence,978-1-5090-6590-5/17/2017 IEEE  

 

[5] Pankajdeep Kaur,Kanwal Preet Kaur, SQL Injection:  Study and 

Augmentation-978-1-4799-8436-7/15/2015 IEEE  

 

[6] https://www.owasp.org  

 

[7]  Dafydd Stuttard and Marcus Pinto. The Web Application   

Hackers Handbook: Discovering and Exploiting Security  

        a.Flaws 


