
IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 411 www.ijsart.com

Self Driving Car Using AI & ML

Prof. Sushma Wankhede, Kaustubh Kadam, Aditya Patil, Ashish Patil,
1, 2 Dept of Instrumentation

1, 2 B.V.C.O.E

Abstract- The project aims to build a monocular vision

autonomous car prototype using Raspberry Pi as a processing

chip. An HD camera along with an ultrasonic sensor is used

to provide necessary data from the real world to the car. The

car is capable of reaching the given destination safely and

intelligently thus avoiding the risk of human errors. Many

existing algorithms like lane detection, obstacle detection are

combined together to provide the necessary control to the car.

Keywords- Raspberry PI, lane detection, obstacle detection.

I. INTRODUCTION

 Rushing around, trying to get errands done, thinking

about the things to be bought from the nearest grocery store

has become a part of our daily schedule. Driver error is one of

the most common cause of traffic accidents, and with cell

phones, in- car entertainment systems, more traffic and more

complicated road systems, it isn't likely to goaway.

With the number of accidents increasing day by day, it has

become important to take over the human errors and help the

mankind. All of this could come to an end with self-driving

cars which just need to know the destination and then let the

passengers continue with their work. This will avoid not only

accidents but also bring a self-relief for minor day to day

driving activities for small items.

II. HARDWARE DESIGN

List of Hardware

A pre-built four wheel drive (4WD) chassis is used as

a base on which following hardware components are fit [9]:

 Raspberry Pi 3 Model B+ for GPU and CPU

computations

 Jumper wires to connect individual components

 Camera case

 Picamera

 Ultrasonic sensor to detect obstacles

Hardware and software description

Raspberry Pi

The Raspberry Pi is a credit card-sized single-board computer.

In this project, we have used the model 3 B+. It

comprises of a 1 GB RAM model with 4 USB ports and

1.4GHz 64-bit quad-core processor, dual-band wireless LAN,

Bluetooth 4.2/BLE, faster Ethernet, and Power-over-Ethernet.

Fig 1: Features offered in Raspberry Pi 3 Model B+

Pi Camera

It is the camera shipped along with Raspberry Pi

[18]. Pi camera module is also available to which can be used

to take high-definition videos as well as still photographs [18].

Ultrasonic Sensors

Ultrasonic sensors evaluate attributes of a target by

interpreting the echoes from radio or sound waves respectively

[1]. In this project, they are used to detect the distance of

obstacles from the car [1].

Raspbian OS

Of all the operating systems Arch, Risc OS, Plan 9 or

Raspbian available for Raspberry Pi, Raspbian comes out on

top as being the most user-friendly, best-looking, has the best

range of default softwares and optimized for the Raspberry Pi

hardware [19]. Raspbian is a free operating system based on

Debian (LINUX), which is available for free from the

Raspberry Pi website [19].

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 412 www.ijsart.com

Python

Python is a widely used general-purpose, high-level

programming language [18,20, 21]. Its syntax allows the

programmers to express concepts in fewer lines of code when

compared with other languages like C, C++or java [20, 21].

RPi.GPIO Python Library

The RPi.GPIO Python library allows you to easily

configure and read-write the input/output pins on the Pi’s

GPIO header within a Python script [18, 20]. This package is

not shipped along with Raspbian.

OpenCV

It (Open Source Computer Vision) is a library of

programming functions mainly aimed at real-time computer

vision.

It has over 2500 optimized algorithms, including both

a set of classical algorithms and the state of the art algorithms

in Computer Vision, which can be used for image processing,

detection and face recognition, object identification,

classification actions, traces, and other functions [21]. This

library allows these features be implemented on computers

with relative ease, provide a simple computer vision

infrastructure to prototype quickly sophisticated applications

[20, 21].

The library is used extensively by companies like

Google, Yahoo, Microsoft, Intel, IBM, Sony, Honda, Toyota.

It is also used by many research groups and government [21].

It is based on C++ but wrappers are available in python as

well. In our project is used to detect the roads and guide the

car on unknown roads [21].

Hardware Components Connection

The 4 wheels of the chassis are connected to 4

separate motors. The motor driver IC L293D is capable of

driving 2 motors simultaneously [22]. The rotation of the

wheels is synchronized on the basis of the sides i.e. the left

front and left back wheels rotate in sync and right front and

right back- wheels rotate in sync. Thus the pair of motors on

each side is given the samedigital input from L293D at any

moment. This helps the car in forward, backward movements

when both side wheels rotate in same direction with same

speed. The car turns when the left side wheels rotate in

opposite direction to those in right[22].

The chassis has two shelves over the wheels

separated by 2 inch approx. The IC is fixed on the lower shelf

with the help of two 0.5 inch screws. It is permanently

connected to the motor wires and necessary jumper wires are

drawn from L293D to connect to Raspberry Pi [9, 22]. The

rest of the space on the lower shelf is taken by 8 AA batteries

which provide the power to run themotors.

To control the motor connected to pin 3 (O1), pin 6

(O2), the pins used are pin 1, pin 2 and pin 7 which are

connected to the GPIOs of Raspberry pi via jumper wire

Fig2: Block Diagram

Fig 3: Hardware Connections

The raspberry pi case is glued on the top shelf along with the

L shaped aluminum strip. The pi is fit in the case and the

aluminum strip gives the support to the camera fit on servo

motor and the ultrasonic sensor [1, 18, 20].

The Wi-Fi dongle is attached to the USB port in Raspberry Pi

in order to connect to it wirelessly.

The complete connection of the raspberry pi with

motor controller L293D can be found in fig 2[9, 22]. Since

raspberry pi needed its own IP, it needs to be connected to a

Wi-Fi router or Hotspot [9]. For the same we need to make

some changes in the field specified so as to make raspberry pi

recognize the router every time it boots up.

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 413 www.ijsart.com

III. OVERVIEW & OBJECTIVE

In recent years, both the public and industry's interest

in autonomous cars have increased dramatically. The reason

that our group decided to pursue such a project is due to our

shared interest in this matter. The goal of this project is to

provide the team with hands on experience on creating an

autonomous car that has basic self-driving capabilities. Most

importantly, we learned and understood the enormous

challenges it takes to create a fully functional autonomous car

safe for real-life use. Despite our project is only a simple

model, we aimed to perfect each of our capabilities - road

tracking, traffic sign detection and collision avoidance.

Input Stage - Pi Camera & Ultrasonic Sensor

Our project uses Picamera and ultrasonic sensor as

our input stage, the Picamera and ultrasonic sensor are

connected to the Raspberry Pi and communicates with the

laptop via TCP socket, each input has its unique port number

and same IP address, which is our laptop current IP address.

The Picamera takes 10 frames per second, and send the

streamed image frames to the laptop, the image data is used to

achieve the road tracking and traffic signs detection. The

ultrasonic sensor is HC-SR04, and its operating voltage is 5V.

As the Raspberry Pi gets the sensor data, the data will send to

the laptop. The sensor is put on the front of car, it is used to

measure the distance of the front object in order to avoid

collision.

Training Stage - Artificial Neural Network (ANN) &

Classifier

After making sure that we can stream real-time video

into our own computer by frames, we began to collect data

and then train the data by using two simple machine learning

algorithms which are 3-layer Artificial Neural Network for

road tracking and Haar feature-based cascade classifiers for

object detection.

For road tracking part, we aimed to achieve that car

can predict four directions while driving by classifying road

frames token in real time into those four categories thus it can

run automatically by tracking the road. Every input frame will

be reshaped into 320*120 size with 38,400 pixels. Every pixel

is used as one neuron xk in the input layer. The hidden layer

will have 32 neurons as the basic feature extraction. For the

output layer, we will have four neurons for the four different

directions which are forward, left, right, and reverse.

Fig. 4 3-layer neural network consisting of input layer, hidden

layer, and output layer.

We wrote two python scripts to collect frames data

first and to train data for direction prediction. In details, we

built white road and drove the car running along the road

manually by using the four-direction keys in our keyboard to

control the directions for the car. While car was running, it

would stream the real-time video back to our laptop and when

we clicked the right decision for one input frame by using

pygame module, the frame would be added into image array as

the data for the input layer and the decision will be added into

label array as the date for the output layer. All the data will be

kept in file. After collecting more than 4500 frames each time,

we splitted all the frames into training data (0.6) and testing

data (0.4). We put all the training data into training python

script which we used the 3-layer ANN module with

backpropagation in OpenCV to get the right prediction

parameters. At the same time, testing data can help us see the

performance of the prediction parameters. We have trained for

numerous times and finally got the 96% accuracy for training

and 93% accuracy for testing.

Fig 3:Neural Networks Prediction

Forward and Right

Right

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 414 www.ijsart.com

Forward and left

Fig 4: Actual Paper Paths

Below shows the training data collection process.

First each frame is cropped and converted to a numpy array.

Then the train image is paired with train label (human input).

Finally, all paired image data and labels are saved into anpz

file. The neural network is trained in OpenCV using back

propagation method. Once training is done, weights are saved

into a xml file. To generate predictions, the same neural

network is constructed and loaded with the trained xml file.

Fig 5: Numpy Arrays.

Object Detection

This project adapted the shape-based approach and

used Haar feature-based cascade classifiers for object

detection. Since each object requires its own classifier and

follows the same process in training and detection, this project

only focused on stop sign and traffic light detection.

OpenCV provides a trainer as well as detector.

Positive samples (contain target object) were acquired using a

cell phone, and were cropped that only desired object is

visible. Negative samples (without target object), on the other

hand, were collected randomly. In particular, traffic light

positive samples contains equal number of red traffic lights

and green traffic light. The same negative sample dataset was

used for both stop sign and traffic light training. Below shows

some positive and negative samples used in this project.

Fig 6: Actual Prototype.

Fig 6: Cascade Classifier Training

To recognize different states of the traffic light(red,

green), some image processing is needed beyond detection.

Flowchart below summarizes the traffic light recognition

process.

Fig 7:TrafficLight Recognition

Firstly, trained cascade classifier is used to detect

traffic light. The bounding box is considered as a region of

interest (ROI). Secondly, Gaussian blur is applied inside the

ROI to reduce noises. Thirdly, find the brightest point in the

ROI. Finally, red or green states are determined simply based

on the position of the brightest spot in the ROI.

Distance Measurement

Raspberry Pi can only support one pi camera module.

Using two USB web cameras will bring extra weight to the

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 415 www.ijsart.com

RC car and also seems unpractical. Therefore, monocular

vision method is chosen.

This project adapted a geometry model of detecting

distance to an object using monocular vision method proposed

by Chu, Ji, Guo, Li and Wang (2004).

Fig 8: Distance Measurement Using PI camera.

P is a point on the target object; d is the distance from

optical center to the point P. Based on the geometry

relationship above, formula (1) shows how to calculate the

distance d. In the formula (1), f is the focal length of the

camera; ∂ is camera tilt angle; h is optical center height; (x0,

y0) refers to the intersection point of image plane and optical

axis;

(x, y) refers to projection of point P on the image

plane. Suppose O1 (u0,v0) is the camera coordinate of

intersection point of optical axis and image plane, also

suppose the physical dimension of a pixel corresponding to x-

axis and y-axis on the image plane are dx and dy. Then:

v is the camera coordinates on y-axis and can be

returned from the object detection process. All other

parameters are camera’s intrinsic parameters that can be

retrieved from camera matrix.

OpenCV provides functions for camera calibration.

Camera matrix for the 8MP pi camera is returned after

calibration. Ideally, a x and a y have the same value. Variance

of these two values will result in non-square pixels in the

image. The matrix below indicates that the fixed focal length

lens on pi camera provides a reasonably good result in

handling distortion aspect. Here is an interesting article

discussing the focal length of pi camera with stock lens and its

equivalent to 35mm camera .

The matrix returns values in pixels and h is measured

in centimeters. By applying formula (3), the physical distance

d is calculated in centimeters.

RC Car Control Unit

The RC car used in this project has an on/off switch

type controller. When a button is pressed, the resistance

between the relevant chip pin and ground is zero. Thus, an

Arduino board is used to simulate button-press actions. Four

Arduino pins are chosen to connect four chip pins on the

controller, corresponding to forward, reverse, left and right

actions respectively. Arduino pins sending LOW signal

indicates grounding the chip pins of the controller; on the

other hand sending HIGH signal indicates the resistance

between chip pins and ground remain unchanged. The

Arduino is connected to the computer via USB. The computer

outputs commands to Arduino using serial interface, and then

the Arduino reads the commands and writes out LOW or

HIGH signals, simulating button-press actions to drive the RC

car.

IV. RESULTS

Prediction on the testing samples returns an accuracy

of 85% compared to the accuracy of 96% that the training

samples returns. In actual driving situation, predictions are

generated about 10 times a second (streaming rate roughly 10

frames/s).

Haar features by nature are rotation sensitive. In this

project, however, rotation is not a concern as both the stop

sign and the traffic light are fixed objects, which is also a

general case in real world environment.

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 416 www.ijsart.com

Fig 9: Actual Output.

For distance measurement aspect, the ultrasonic

sensor is only used to determine the distance to an obstacle in

front of the RC car and provides accurate results when taking

proper sensing angle and surface condition into

considerations. On the other hand, Pi camera provides “good

enough” measurement results. In fact, as long as we know the

corresponding number to the actual distance, we know when

to stop the RC car. Experimental results of detecting distance

using pi camera are shown as below:

Fig 10: Pi cam vs Ultrasonic Distance Measurement

In this project, the accuracy of distance measurement

using monocular vision approach could be influenced by the

following factors: (1) errors in actual values measurement, (2)

object bounding box variations in detecting process, (3) errors

in camera calibration process, (4) nonlinear relationship

between distance and camera coordinate: the further the

distance, the more rapid change of camera coordinate, thus the

greater the error.Overall, the RC car could successfully

navigate on the track with the ability to avoid front collision,

and respond to stop sign and traffic light accordingly.

REFERENCES

[1] OpenCV Documentation -Haar Feature- based Cascade

Classifier for Object Detection

[2] OpenCV Documentation - Cascade Classifier Training

[3] NaotoshiSeo - Tutorial: OpenCVhaartraining (Rapid

Object Detection With A Cascade of Boosted Classifiers

Based on Haar-like Features)

[4] Material for NaotoshiSeo’s tutorial

[5] OpenCV Answers - “about

traincascadeparemeters, samples, and other…”

[6] OpenCV Answers - “memory consumption while training

> 50GB”

[7] David J Barnes on Robotics & Mechatronics -

OpenCVHaarTraining - Object Detection with a Cascade

of Boosted Classifiers Based on Haar-like Features - Part

I

[8] David J Barnes on Robotics & Mechatronics -

OpenCVHaarTraining - Object Detection with a Cascade

of Boosted Classifiers Based on Haar-like Features - Part

II

[9] github.com/foo123/HAAR.js

[10] github.com/mtschirs/js-objectdetect

[11] github.com/inspirit/jsfeat

[12] Computer Vision Software - FAQ:

OpenCVHaartraining

[13] StackOverflow - haar training OpenCV assertion failed

