
IJSART - Volume 5 Issue 1 –JANUARY 2019 ISSN [ONLINE]: 2395-1052

Page | 77 www.ijsart.com

Space Attackers Using Unity Cross-Platform Game
Engine

 Aditi Pawar1, Sukruta Lomte2, Rutuja Kurkelli3, Miss. Varsha Vetal 4

Department of Computer Engineering
1,2,3,4 JSPM BSP, Pune, India

Abstract- In our project we will be placed in a space setting.
The player can control a spaceship at the start of the game
and can be changed during the game play. The player can
move in 2 degree of freedom. There are three types of enemies
like ships, asteroids and boss. The enemy ships will have basic
Artificial Intelligent system as they can change their paths
while shooting in the direction of the player. The asteroids will
follow a straight line in any random direction. The boss will
be a scaled up version of other types of enemies which will
stay at the screen until defeated.

I. INTRODUCTION

The game must allow the player to play the game,
save and load the progress at any time, have score system to
rate player performance. The game will be divided into stages.

The Player can roam in an Top Down Arcade style

when not on a mission. The player controls character
movements over obstacles, defeat enemies, reaching end goal
to finish one stage. Player character will loss a life or reduces
its shields when collided with enemies or lethal obstacles.

1.1 The Player Game Object

 Using and Visualizing the Mesh Collider

The Mesh Collider component will not participate
properly in physics collisions and will not be visible in the
scene view unless we select “Convex” on the Mesh Collider
Component.

In Unity 5, the Mesh Collider component needs to be

Convex to be able to participate properly in physics collisions.
When “Convex” is not selected, the Mesh Collider will not
participate properly in physics collisions and will not be
visible in the scene view.

1.2 Setting the Mesh Collider Component options

As well as setting “Is Trigger” to true, we must also

make sure (as mentioned in the step above) that the “Convex”
value is selected as well.

1.3 Lighting and Camera

To have no contribution to the lighting from Ambient

Light, the Ambient Light source must have no value. This can
be done by either leaving the Ambient Source as Skybox and
making sure Skybox is None, or by setting the Ambient
Source to Color and making sure the color is Black.

To remove the Skybox, simply delete it. The Skybox

field is a asset field like all of the other asset fields in the
inspector.

You can either select the target button to the right

(the circle with the dot in the middle) and it will open up an
asset picker window:

IJSART - Volume 5 Issue 1 –JANUARY 2019 ISSN [ONLINE]: 2395-1052

Page | 78 www.ijsart.com

1.4 MOVING THE PLAYER

Unity no longer uses “Helper References” to access
common components.

In Unity 5 and later we can no longer access

components using their “shorthand helper references” and we
must access them directly using “GetComponent”.

One example of this is accessing the Rigidbody

component attached to the same GameObject as the script. In
Unity 4 and earlier, this was simply accessed with
“rigidbody.”

Now this must be done with

“GetComponent<Rigidbody>().”

It is usually a “best practice” to find this Component

when the instance of the script initializes, and “cache” the
reference in a local variable.

This is commonly written as: private
Rigidbody;
void Start ()
{
 rb = GetComponent<Rigidbody>();
}

Now, with the reference to the local Rigidbody

component saved in the variable “rb”, we can use this
reference anywhere within the script.

One example would be to add force to the rigidbody
with:

rb.AddForce (someVector3Value);

II. GAME ENGINE

In our project we selected Unity3D version 5.6 for

development of the project. Unity3D is a powerful
crossplatform 3D engine and it isuser friendly development
environment. Unity3D is a easy to understand so anybody who
want to easily create 3D games and application for mobile,
laptop, computer, web etc. create 3D games and applications
for mobile, desktop, the web and consoles.

2.1 MOVEMENT OF GAME

Movements in mission is designed in such a way that
confine the player to face forward towards the stage
progression and control the space required to design the
mission towards sure achievement if the player goes through
all the enemies.

III. USER INTERFACE

Fig 11: Screenshot during a gameplay

Fig 12: Pause Menu

IJSART - Volume 5 Issue 1 –JANUARY 2019 ISSN [ONLINE]: 2395-1052

Page | 79 www.ijsart.com

Fig 13: Weapons selection and favorites menu

IV. TECHNOLOGIES USED

4.1 C# Language

(For writing object's dynamic behaviours)
C# (pronounced as see sharp) is a multi-paradigm

programming language encompassing strong typing,
imperative, declarative, functional, generic, object-oriented
(class-based), and component-oriented programming
disciplines. It was developed by Microsoft within its .NET
initiative and later approved as a standard by Ecma
(ECMA334) and ISO (ISO/IEC 23270:2006). C# is one of the
programming languages designed for the Common

Language Infrastructure.

4.2 Unity3D

Unity is a cross-platform game engine developed by
Unity Technologies, which is primarily used to develop
videogames and simulations for computers, consoles and
mobile devices.

First announced only for OS X, at Apple's Worldwide

Developers Conferencein 2005, it has since been extended to
target 27 platforms.

V. FUTURE SCOPE

 Round Extension
 Improve Graphical Representation
 Introduce new game features
 Introduce new environment and scenes
 Take user response through websites and

produce web rank list.

VI. CONCLUSION

A Software project means a lot of experience. In this

section we summarise the experience gained by project team
during development of “Space Attackers”.

Working with game engine completely a new experi

ence for us. Normally we are working with different OO
languages, DBMS, mark up languages etc. We adopt these
things by video tutorials, text tutorials, internet and learning
materials given by the tools themselves. It’s a matter of time,
patience and hard work.

It is very sensible work and it demands much time

because the game engines try to connect game environment
with the real world. Creating a 3D model is very difficult
because you need to work with each and every point of the
model. The Exists game engines demands vast knowledge
about its properties, sections and subsections. After all the
thing is that a game project is not a project of 6 or 8 months
for three people!

REFERENCES

[1] R. Galantay, et al., "living-room: Interactive, space

orientedaugmented reality," 2004, p. 71.
[2] K. Kim, et al., "ARPushPush: Augmented reality gamein

indoor environment," 2005
[3] M. WEILGUNY and D. MEDIEN, "Design Aspects in

Augmented Reality Games," 2006.
[4] AKENINE-MÖLLER, T., HAINES, E., and HOFFMAN

N. 2008. Real-Time Rendering. Third Edition, Boca
Raton, CRC Press.

[5] BLINN, J. 1978. Simulation of Wrinkled Surfaces. ACM
SIGGRAPH Computer Graphics, vol. 12, no. 3, pp. 286–
292.

[6] NYSTROM, R. 2014. Game Programming Patterns.
Genever Benning, ch 2.

