
IJSART - Volume 4 Issue 6 – JUNE 2018 ISSN [ONLINE]: 2395-1052

Page | 916 www.ijsart.com

Divisible Load Theory A New Paradigm For Load
Scheduling in Cloud Systems

Karishma Sethi1, Neelam Joshi2

1Dept of Computer Science
2Assistant Professor, Dept of Computer Science

1, 2 MPCT College, Gwalior, MP, India

Abstract- Cloud computing can be defined as a paradigm for
computation of a large number of systems connected in a
private or public network to provide a dynamically scalable
infrastructure application, data and storage. Cloud computing
can be viewed as a distributed process which processes data
transferred from personal computers and servers to the
computers located at different clusters and use the high speed
of the network.

Cloud computing [1]stores the large amount of data
from multiple users and distributes the resources in the open
environment, as the amount of data stored increases in the
open environment,the task of balancing the load arises, thus
making load balancing a challenge in cloud computing.

Keywords- Cloud computing, load balancing, Divisible load
scheduling .

I. INTRODUCTION

 Load balancing is the solution to the problem of
overloaded servers in a cloud environment [1]. This balancing
is achieved by distributing larger processing load to smaller
processing nodes for enhancing the performance of systems in
the cloud.

It helps in allocation of computing resources fairly. It also
helps in minimizing resource consumption by proper load
balancing techniques. It also helps in implementing the failure
of overloadednodes in the system. Different load balancing
technique helps the system in network by providing maximum
throughput with minimum response time.

II. DISTRIBUTED LOAD BALANCING FOR
CLOUDS

In complex and large systems, the need for load

balancing increases tremendously, so as to achieve load
balancing in such systems different load balancing techniques
should act at the components of the clouds in such a way that
the load of the whole cloud is balanced. For this purpose, the
three solutions which can be applied to a distributed system[7]

are :- Honeybee foraging algorithm, a biased random sampling
and active clustering[2].

2.1 Honeybee Foraging Algorithm

This is a behaviour-basedalgorithm, which is inspired
by honeybees and their strategy to find food. Two classes of
bees are defined in this algorithm: forager and scout. A forager
bee searches for the appropriate source of food , upon finding
one they return to their beehive and performs “waggle dance”.
The source of food is selected based on the quality, quantity
and distance of the source of food from the beehive. Waggle
dance gives an idea of how much food is left and hence results
in more exploitation of the food source.

In case of cloud computing, a cloud consists of

different servers and these virtual servers and processes
different request from the users. Each server acts as a forager
or scout and processes a request from its queue, after the
successful completion of a request each server calculates a
profit or reward, which is similar to the quality that the bees
show in their waggle dance and places the advert on the board.

Initially each server chooses virtual server randomly

to serve a request, as the request is completed, load of current
server is calculated and compared with the overall virtual
servers load. If the load of a particular virtual server is low
then the next request will be assigned to this virtual server but
if the load of that virtual sever is high then the scout reads the
advert board and will follow the listed virtual servers from the
advert board. Generally the load is calculated in terms of CPU
utilization.

IJSART - Volume 4 Issue 6 – JUNE 2018 ISSN [ONLINE]: 2395-1052

Page | 917 www.ijsart.com

2.2 Biased Random Sampling

Here a virtual graph is constructed, with the

connectivity of each node (a server is treated as a node)
representing the load on the server. Each server is symbolized
as a node in the graph, with each indegree directed to the free
resources of the server.

Regarding job execution and

completion,wheneveranodedoesorexecutesajob,itdeletesaninco
mingedge,whichindicates reduction in the availability of free
resource. After completion of a job, the node creates an
incoming edge, which indicates an increase in the availability
of free resource. The addition and deletion of processes is
done by the process of random sampling. The walk starts at
any one node and at every step a neighbor is chosen randomly.
The last node is selected for allocation for load. Alternatively,
another method can be used for selection of a node for load

allocation, that being selecting a node based on certain criteria
like computing efficiency, etc. Yet another method can be
selecting that node for load allocation, which is under loaded
i.e. having highest in degree. If b is the walk length, then, as b
increases, the efficiency of load allocation increases. We
define a threshold value of b, which is generally equal to log n
experimentally.

A node upon receiving a job, will execute it only if

its current walk length is equal to or greater than the threshold
value. Else, the walk length of the job under consideration is
incremented and another neighbor node is selected randomly.
When a node then in the graph executes a job, an incoming
edge of that ode is deleted. After completion of the job, an
edge is created from the node initiating the load allocation
process to the node, which was executing the job.

Finally what we get is a directed graph. The load

balancing scheme used here is fully decentralized, thus
making it apt for large network systems like that in a cloud.

2.3 Active Clustering

Active Clustering works on the principle of grouping
similar nodes together and working on these groups. The
process involved is:

A node initiates the process and selects another node

called the matchmaker node from its neighbors satisfying the
criteria that it should be of a different type than the former
one.  

The so called matchmaker node then forms a

connection between a neighbor of it which is of the same type
as the initial node. The matchmaker node then detaches the
connection between itself and the initial node.  The above set
of processes is followed iteratively.

III. PROPOSED WORK

The time required for completing a task with in one

process is very high. So the task is divided into number of sub-
tasks and each sub-task is given one job. Let the task S is
divided into number of sub-tasks S1, S2, S3...Sn. Out of these
some are executed sequentially and some are executed
parallel. So the total time period for completing the task
decreases and hence the performance increases. These sub-
tasks can be represented in a graph structure known as state
diagram. An example is given below.

IJSART - Volume 4 Issue 6 – JUNE 2018 ISSN [ONLINE]: 2395-1052

Page | 918 www.ijsart.com

Figure : State Diagram

S1 is executed first. S2,S3,S4 and S5 can be executed

in parallel during the same time slice. S18 requires the
execution of S6 and S7 both, but S19 requires the execution of
S8 and so on for all the sub tasks as shown in the state
diagram. Our aim is to execute these tasks in different nodes
of a distributed network so that the performance can be
enhanced.

IV. DESCRIPTION

The distributed network may follow different

topologies. The tasks are distributed over the whole network.
One topological network connects with the other through a
gate- way. One of the physical topologies forming a cloud is
shown in the figure 1.

This distributed network is a cloud, because some of

the nodes are Mobile clients, some of them are Thin and some
are Thick clients. Some of them are treated as masters and
some are treated as slaves. There are one or more datacenters
distributed among the various nodes, which keeps track of
various computational details. Our aim is to apply the
Divisible Load Scheduling Theory(DLT) [5] for the clouds of
different sizes and analyze different performance parameters
for different algorithms under DLT and compare them.

Figure 1: A cloud showing different topologies

V. DIVISIBLE LOAD SCHEDULING THEORY IN
CLOUDS

Introduction

Divisible load scheduling theory (DLT) [4]in case of

clouds is an optimal division of loads among a number of
master computers, slave computers and their communication
links. Our objective is to obtain a minimal partition of the
processing load of a cloud connected via different
communication links such that the entire load can be
distributed and processed in the shortest possible amount of
time.

The whole Internet can be viewed as a cloud of many

connection-less and connection- oriented services. The
concept of load balancing in Wireless sensor networks can
also be applied to clouds as WSN is analogous to a cloud
having number of master computers (Servers) and number of
slave computers(Clients).

The slave computers are assumed to have a certain

measurement capacity. We assume that computation will be
done by the master computers, once all the measured data is
gathered from corresponding slave computers. Only the
measurement and communication times of the slave computers
are considered and the computation time of the slave
computers is neglected. Here we consider both heterogeneous
and homogeneous clouds. That is the cloud elements may
possess different measurement capacities, and communication
link speeds or the same measurement capacities, and
communication link speeds. One slave computer may be
connected to one or more master computers at a certain instant
of time.

In DLT in case of clouds, an arbitrarily divisible load

without having any previous relations is divided and first
distributed among the various master computers (for
simplicity here the load is divided equally between the master
computers) and the each master computer distributes the load
among the corresponding slave computers so that the entire
load can be processed in shortest possible amount of time. An
important reason for using DLT is its flexibility, tractability,
data parallelism and computational difficulties [8].

System Model

The cloud that we have considered here is a single

level tree (star) topology consisting of K number of master
computers and each communicating N number of slave
computers as shown in Fig 2.

IJSART - Volume 4 Issue 6 – JUNE 2018 ISSN [ONLINE]: 2395-1052

Page | 919 www.ijsart.com

Figure 2 : K number of master computers each joining N
number of slave computers in single level Tree network

(STAR Topology)

It is assumed that the total load considered here is of

the arbitrarily divisible kind that can be partitioned into
fractions of loads to be assigned to all the master and slave
computers in the cloud. In this case each master computer first
assigns a load share to be measured to each of the
corresponding N slave computers and then receives the
measured data from each slave. Each slave then begins to
measure its share of the load once the measurement
instructions from the respective master have been completely
received by each slave. We also assume that computation time
is negligible compared with communication and measurement
time.

5.1 Parameters, Definitions and Notation[7]

βki  The fraction of load that is assigned to a slave i by
master k. 

akiA constant that is inversely proportional to the measuring
speed of slave i in the cloud.

bki A constant that is inversely proportional to the
communication speed of link i in the cloud.

Tms Measurement intensity constant. This is the time it takes
the ith slave to measure theentireloadwhenaki
=1.Theentireassigned measurement loadcanbemeasuredonthe
ith slave in time akiTms.

TcmCommunication intensity constant. This is the time it
takes to transmit all of the measurement load over a link when
bki = 1. The entire load can be transmitted over the ith link in
time bkiTcm.
 

TkiThe total time that elapses between the beginning of the
scheduling process at t =0 and the time when slaver i
completes its reporting to the master k, i =0,1,... ,N. This
includes, in addition to measurement time, reporting time and
idle time. 

TfkThis is the time when the last slave of the master k finishes
reporting (finish time or make-span).

Tfk = max(Tk1,Tk2,Tk3,...,TkN). 

Tf This is the time when the last master receives the
measurement from its last slave.

Tf = max(Tf1,Tf2,Tf3,...,TfN).

Some of the above used parameters and notations are
taken from. These parameters were already used for finding
closed form equations for load balancing for Wireless Sensor
Networks.

5.2Measurement and Reporting Time 

When Measurement starts Simultaneously and Reporting
is done sequentially

Initially when time t = 0, all the slaves are idle and
the master computers start to communicate with the first slave
of the corresponding slaves in the cloud. By time t = t1, each
slave will receive its instructions for measurement from the
corresponding master as shown in fig 3. It is assumed that
after measurements are made, only one slave will report back
to the root master at a time (or we can say only a single link
exists between them).

The slaves here receive a fraction of load from their

corresponding master sequentially and the computation will
start after each slave completely receives its load share.

Figure 3: Timing diagram for single level tree network with a

master computer and N slaves, which report sequentially.

IJSART - Volume 4 Issue 6 – JUNE 2018 ISSN [ONLINE]: 2395-1052

Page | 920 www.ijsart.com

Let us consider the first master computer and its
corresponding group of slaves. From the definition of Tki , we
can write

T11 =t1+β11a11Tms+β11b11Tcm (1)
T12 =t1+β12a12Tms+β12b12Tcm (2)

.

.
T1N =t1+β1Na1NTms+β1Nb1NTcm (3)

The total measurement load originating at all the master
computers is assumed to be normalized to a unit load. Thus
each master computer will handle (1/K) load. So

β11 +β12 +β13 +...+β1N−1 +β1N = 1/K (4)

 Based on the timing diagram, we can write

β11a11Tms=β12a12Tms+β12b12Tcm
(5)

β12a12Tms =

β13a13Tms+β13b13Tcm (6)
.
.

β1N−2 a1N−2 Tms = β1N−1 a1N−1 Tms + β1N−1 b1N−1 Tcm
 (7)

β1N−1 a1N−1 Tms = β1N a1N Tms + β1N b1N Tcm
 (8)

A general expression for the above set of equations is

β1i = s1iβ1i−1 (9)

where

s1i = a1i−1Tms/(a1iTms +b1iTcm)

and i = 2,3,...,N.

The above recursive equation for

β1i can be rewritten in terms of β11 only as

iβ1i =∏s1jβ11 (10)

j=2
Now using the above sets of equations and the normalization
equation, one can solve forβ11 as

Ni β11 +∑∏s1jβ11 =1/K (11)

i=2 j=2

So β1i can be written as

β1 = 1 .
K(1+∑Ni=2∏ij=2s1j) (12)

Putting in eq-(10),

β1i = ∏ij=2s1j .

K1+∑Ni=2∏ij=2s1j (13)

where i =2,3,4,... ,N.
 
The minimum measuring and reporting time of the network
will then be given as

Tf =t1+ (a11Tms+b11Tcm)

K(1+∑Ni=2∏ij=2s1j) (14)

Similarly, we can obtain the generalized equation for master
computer r as

Tfr =t1+ (ar1Tms+br1Tcm)
K(1+∑Ni=2∏ij=2srj) (15)

In case of homogeneous networks (same measurement
capacities and link speeds),
we can write

s11 =s12 =s13 =...=s1N−1 =s1
a11 =a12 =a13 =...=a1N =a1
b11 =b12 =b13 =...=b1N =b1

So, eq-(5) becomes

β1 (1+s1 +s21 +...+sN−2 +sN−1) = 1/K
(16)

Wheres1 =a1Tms/(a1Tms+b1Tcm). Simplifying the above
equation,

β1 = 1−s1 /K (1 − s N1) (17)

The master computer 1 will use the value of β11 to
obtain the amount of data that has to be measured by the rest
of the N-1 slaves corresponding to it by using the following
equation:

β1 =β1s1i−1(18)

where i =2,3,4,... ,N.

IJSART - Volume 4 Issue 6 – JUNE 2018 ISSN [ONLINE]: 2395-1052

Page | 921 www.ijsart.com

 The minimum measuring and reporting time of the
homogeneous network will then be given as

Tf =t1+ (a1Tms+b1Tcm)(1−s1)1

K (1 − s N1)
(19)

This measurement and reporting time of the network

approaches t1 + (b1Tcm)/K as N approaches infinity. So the
reporting time supresses the measurement time when the no.
of slaves to a corresponding master approaches infinity .
Similarly we can obtain the above expression for rest of the
master computers.

5.3When the Measurement starts Simultaneously and
Reporting ends Simultaneously

Here each of N slave computers corresponding to a
master computer in the cloud finish reporting at the same time.
The cloud will have the same report finishing time for each
slave corresponding to a master. That is each slave has a
separate channel to its master as shown in the timing diagram
of the network.

In this case the slaves receive their share of load from

the master concurrently and start computation after completely
receiving their share of load. Each slave begins to mea- sure
its share of the load at the moment when all finish receiving
their measurement instructions from the corresponding master.
From the definition of Tki , we can write

T11 =t1+β11a11Tms+β11b11Tcm (20)
T12 =t1+β12a12Tms+β12b12Tcm (21)

.

Figure 4: Timing diagram for a master computer and N slaves
with simultaneous reporting termination (adopted from [8])

T1N =t1+β1Na1NTms+β1Nb1NTcm(22)

The total measurement load originating at all the
master computers is assumed to be normalized to a unit load.
Thus each master computer will handle (1/K) load. So

β11 +β12 +β13 +...+β1N−1 +β1N = 1/K (23)

In this case since all processors stop reporting at the
same time, we have T11 = T12 = T13 =...=T1N.

Based on the timing diagram, we can write for master

computer 1 and its slaves,

β11r11 =β12r12 (24)
β12r12 =β13r13 (25)

.

.

.
β1N-2r1N-2=β1N-1 r1N-1 (26)

β1N-1 r1N-1 = β1N r1N (27)

where,

r1i = a1Tms +b1Tcm, i=1,2…..N

Putting the above equations in eq.-(24),

β11= 1 (28)
 K(1+r1 ∑N1i=1/2 r1)

So we can write β1i as

(29)

 From the above expression, it can be easily seen that
the share of each slave corresponding to its master will
entirely depend on the combined speed of the measurement
and communication of that slave. The minimum measurement
and reporting time of the network will then be given as

Tf =T1 =t1+ (a1 Tms+b1 Tcm)1/r11

K(∑N

i=1 /r1i (30)

Similarly for the master computer p, the generalised equation
will be

IJSART - Volume 4 Issue 6 – JUNE 2018 ISSN [ONLINE]: 2395-1052

Page | 922 www.ijsart.com

 Tfp =T1p =t1+ ap1Tms+bp1Tcm)1/r11

K(∑Ni=1
1/

r1i)
(31)

 For the case of a homogeneous network, each slave

corresponding to a master in the network shares the load
equally. That is, β1i =1/(KN), for i =1,2,3,... ,N. So, the
minimum measuring and reporting time of the network will be

Tf1 =t1+a1Tms+b1Tcm
KN (32)

Similarly we can obtain the above expression for rest

of the master computers.

 Conclusion

This chapter describes the concept of divisible load
scheduling theory and how it can be applied in case of clouds.
It also explains the proposed system model, the various
notations used and analysis of measurement and reporting
time for the two cases that we have considered.

VI. PERFORMANCE EVALUATION

6.1 Introduction

Here we consider the following two cases. In the first

case the measurement and reporting time is plotted against the
number of slaves corresponding to a master, where the link
speed b is varied and measurement speed a is fixed. In the
second case, the measurement and reporting time is plotted
against the number of slaves corresponding to master, where
link speed b is fixed and measurement speed a is varied.

6.2 When Measurement starts Simultaneously and
Reporting is done sequentially

In Fig5, the measurement/report time is plotted

against the number of homogeneous slaves corresponding to a
master when the value of the communication speed b is varied
from 0 to 1 at an interval of 0.3 and the value of measurement
speed a is fixed to be 1.5. In all cases Tcm =1 and Tms = 1.
From the figure we can infer that the faster the communication
speed, the smaller the measurement/report time and the
measurement/report time levels off after a certain number of
slaves for each performance curve. Number of master
computers in the cloud doesn’t have significant contribution to
measurement/report time of a single master.

Fig. 6 shows for the case when the inverse measuring
speed a is varied from 1 to 2 at an interval of 0.3 and the
inverse link speed b is fixed to be 0.2. The result confirms that
the measurement time approaches b1Tcm, which in this case is
0.2, as N approaches infinity.

Figure 5: Measurement/report time versus number of slaves

corresponding to master and variable inverse link speed b for
single level tree network with master and sequential re-

porting time.

Figure6:Measurement/report timeversus number of slaves

corresponding to master and variable inverse measuring speed
a for single level tree network with master and sequential

reporting time.

6.3 When the Measurement starts Simultaneously and
Reporting ends Simultaneously

In Fig. 7, the measurement/report time is plotted
against the number of slaves corresponding to a master for the
simultaneous measurement start simultaneous reporting
termination case. The value the inverse link speed b is varied
from 0 to 1 at an interval of 0.3 while the inverse measuring
speed a is fixed to be 1.5. In this case the minimum finish time
decreases as the number of slaves under a master in the
network is increased. This assumes that the communication
speed is fast enough to distribute the load to all the slaves
under a master.

IJSART - Volume 4 Issue 6 – JUNE 2018 ISSN [ONLINE]: 2395-1052

Page | 923 www.ijsart.com

Figure 7: Measurement/report time versus number of slaves
under a master and variable inverse link speed b for single

level tree network with master

Figure 8: Measurement/report time versus number of slaves
under a master and variable inverse measuring speed a for

single level tree network with master

Fig. 8 shows for the case when the inverse measuring
speed a is varied from 1 to 2 at an interval of 0.3 and the
inverse link speed b is fixed to be 0.2.

Conclusion

This chapter evaluates the performance of the two
cases that we have considered in this paper. It also shows the
simulation results that we have got.

VII. CONCLUSION AND FUTURE WORK

7.1 Conclusion

Fig9 shows the comparison between the
measurement/reporting time of both the approaches for the
same no. of slave computers corresponding to the same
master. Here, for both the cases,1 is taken as the inverse link
speed b and 0.5 as the inverse measurement speed a. Number
of master computers is taken to be constant equal to 50. The
plot shows that the measurement/reporting time is smaller in
case of simultaneous reporting as compared to sequential
reporting. It is because in case of sequential reporting, some of
the slaves receive almost zero load from its master. Number of
effective slaves in this case is less as compared to the
simultaneous reporting case.Hence with increase in number of

slaves with respect to a master, the finishing time remains
almost same in case of sequential reporting whereas in case of
simultaneous reporting, the finishing time decreases for the
increase in number of slaves corresponding to a single master.
The graph shows that the finishing time can be improved by
increasing the number of slaves under a master computer in a
cloud only to some extent before saturation in case of
sequential measurement and sequential reporting strategy. But
finishing time can be decreased significantly in case of
simultaneous measurement start and simultaneous reporting
termination by increasing the number of slaves under a single
master computer.

As of now basic concepts of Cloud Computing and

Load balancing has been discussed and some existing load
balancing algorithms have ben studied, those can be applied to
clouds. Also, we have studied the closed-form solutions for
minimum measurement and reporting time for single level tree
networks with different load balancing strategies. The
performance of these strategies with respect to the timing and
the effect of link and measurement speed was studied. A
comparison is also made between different strategies.

Figure 9: Comparison of Measurement/report time versus

number of slaves under a single master under the same
conditions of link speed and measurement speed for both cases

of reporting

7.2 Future Work

Cloud Computing is a large and vast concept and a
very important role is played by load balancing in case of
Clouds. There is a wide scope of improvement in the area.
Here, only two divisible load-scheduling algorithms that may
be applied to clouds, have been discussed, but there are still
many approaches that can be applied to balance the load in
clouds.Performance of the given algorithms may be increased
by varying the parameters.

REFERENCES

[1] Anthony T.Velte, Toby J.Velte, Robert Elsenpeter, Cloud

Computing A Practical Ap- proach, TATA McGRAW-
HILL Edition 2010.  

IJSART - Volume 4 Issue 6 – JUNE 2018 ISSN [ONLINE]: 2395-1052

Page | 924 www.ijsart.com

[2] Martin Randles, David Lamb, A. Taleb - Bendiab, A
Comparative Study into Distributed Load Balancing
Algorithms for Cloud Computing, 2010 IEEE 24th
International Con- ference on Advanced Information
Networking and Applications Workshops.  

[3] Mladen A. Vouk, Cloud Computing Issues, Research and
Implementations, Proceed- ings of the ITI 2008 30th Int.
Conf. on Information Technology Interfaces, 2008, June
23-26.  

[4] Ali M. Alakeel, A Guide to Dynamic Load Balancing in
Distributed Computer Sys- tems, IJCSNS International
Journal of Computer Science and Network Security,
VOL.10 No.6, June 2010.  

[5] http://www-03.ibm.com/press/us/en/pressrelease/
22613.wss  

[6] http://www.amazon.com/gp/browse.html?node=2015900
11  

[7] Martin Randles, Enas Odat, David Lamb, Osama Abu-
Rahmeh and A. Taleb-Bendiab, ”A Comparative
Experiment in Distributed Load Balancing”, 2009 Second
Interna- tional Conference on Developments in eSystems
Engineering.  

[8] Mequanint Moges, Thomas G.Robertazzi, ”Wireless
Sensor Networks: Scheduling for Measurement and Data
Reporting”, August 31, 2005  

