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Abstract- In almost every scientific field, measurements are 
performed over time. These observations lead to a collection 
of organized data called time series. The purpose of time-
series data mining is to try to extract all meaningful 
knowledge from the shape of data. Even if humans have a 
natural capacity to perform these tasks, it remains a complex 
problem for computers. In this article we intend to provide a 
survey of the techniques applied for time-series data mining. 
The first part is devoted to an overview of the tasks that have 
captured most of the interest of researchers. Considering that 
in most cases, time-series task relies on the same components 
for implementation, we divide the literature depending on 
these common aspects, namely representation techniques, 
distance measures, and indexing methods. The study of the 
relevant literature has been categorized for each individual 
aspects. Four types of robustness could then be formalized 
and any kind of distance could then be classified. Finally, the 
study submits various research trends and avenues that can be 
explored in the near future. 
 

I. INTRODUCTION 
 
 A time series represents a collection of values 
obtained from sequential measurements over time. Time-series 
data mining stems from the desire to reify our natural ability to 
visualize the shape of data. Humans rely on complex schemes 
in order to perform such tasks. We can actually avoid focusing 
on small fluctuations in order to derive a notion of shape and 
identify almost instantly similarities between patterns on 
various time scales. Major time-series-related tasks include 
query by content [Faloutsos et al. 1994], anomaly detection 
[Weiss 2004], motif discovery [Lin et al. 2004], prediction 
[Weigend and Gershenfeld 1994], clustering [Lin and Keogh 
2005], classification [Bakshi and Stephanopoulos 1994], and 
segmentation [Keogh et al. 2003a]. Despite the vast body of 
work devoted to this topic in the early years, Antunes and 
Oliveira [2001] noted that “the research has not been driven so 
much by actual problems but by an interest in proposing new 
approaches”. However, with the ever-growing maturity of 
time-series data mining techniques, this statement seems to 
have become obsolete. Nowadays, time-series analysis covers 
a wide range of real-life problems in various fields of research. 
Some examples include economic forecasting [Song and Li 
2008], intrusion detection [Zhong et al. 2007], gene expression 
analysis [Lin et al. 2008], medical surveillance [Burkom et al. 

2007], and hydrology [Ouyang et al. 2010]. Time-series data 
mining unveils numerous facets of complexity. The most 
prominent problems arise from the high dimensionality of 
time-series data and the difficulty of defining a form of 
similarity measure based on human perception. With the rapid 
growth of digital sources of information, time-series mining 
algorithms will have to match increasingly massive datasets. 
These constraints show us that three major issues are involved. 
 
—Data representation. How can the fundamental shape 
characteristics of a time-series be represented? What 
invariance properties should the representation satisfy? A 
representation technique should derive the notion of shape by 
reducing the dimensionality of data while retaining its 
essential characteristics. 
 
 —Similarity measurement. How can any pair of time-series 
be distinguished or matched? How can an intuitive distance 
between two series be formalized? This measure should 
establish a notion of similarity based on perceptual criteria, 
thus allowing the recognition of perceptually similar objects 
even though they are not mathematically identical. —Indexing 
method. How should a massive set of time-series be organized 
to enable fast querying? In other words, what indexing 
mechanism should be applied? The indexing technique should 
provide minimal space consumption and computational 
complexity. 
 

These implementation components represent the core 
aspects of time-series data mining systems. However, these 
are not exhaustive as many tasks will require the use of more 
specific modules. Moreover, some of these are useless for 
some specific tasks. Forecasting (refer to Section 3.5) is the 
most blatant example of a topic that requires more advanced 
analysis processes as it is more closely related to statistical 
analysis. It may require the use of a time-series representation 
and a notion of similarity (mostly used to measure prediction 
accuracy) whereas model selection and statistical learning are 
also at the core of forecasting systems. The components that 
are common to most time-series mining tasks have therefore 
been analyzed and other components found in related tasks 
have been briefly discussed. The following part of this article 
has been organized as follows: first introducing the 
fundamental concepts of time-series data mining (Section 2); 
then presenting an overview of the tasks to which most of the 
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research in this field has been devoted (Section 3); then 
reviewing the literature based on the three core components 
for implementation (Section 4) and finally reviewing the 
research trends for future work in this field (Section 5) 

 
3. TASKS IN TIME-SERIES DATA MINING This section 
provides an overview of the tasks that have attracted wide 
research interest in time-series data mining. These tasks are 
usually just defined as theoretical objectives though concrete 
applications may call for simultaneous use of multiple tasks. 
3.1. Query by Content Query by content is the most active 
area of research in time-series analysis. It is based on 
retrieving a set of solutions that are most similar to a query 
provided by the user. Figure 1 depicts a typical query by 
content task, represented on a two-dimensional search space. 
We can define it formally as follows. 
 

In former times, time-series mining was almost 
exclusively devoted to this task (refer to seminal work by 
Agrawal et al. [1993]). In this article, the representation was 
based on a set of coefficients obtained from a Discrete Fourier 
Transform (DFT) to reduce the dimensionality of data. These 
coefficients were then indexed with an R*-tree [Beckmann et 
al. 1990]. False hits were removed in a postprocessing step, 
applying the Euclidean distance to complete time series. This 
paper laid the foundations of a reference framework that many 
subsequent works just enlarged by using properties of the DFT 
[Rafiei and Mendelzon 1998] or similar decompositions such 
as Discrete Wavelet Transform (DWT) [Chan and Fu 1999], 
that has been shown to have similar efficiency depending on 
the dataset at hand 
 

 
 
 [Popivanov and Miller 2002]. The Discrete Cosine 

Transform (DCT) has also been suggested [Korn et al. 1997] 
but it appeared later that it did not have any advantage over 
other decompositions [Keogh et al. 2004]. Several numeric 
transformations—such as random projections [Indyk et al. 
2000], Piecewise Linear Approximation (PLA) [Shatkay and 
Zdonik 1996], Piecewise Approximate Aggregation (PAA) 
[Keogh et al. 2001b; Yi and Faloutsos 2000], and Adaptive 
Piecewise Constant Approximation (APCA) [Keogh et al. 
2001a]—have been used as representations. Symbolic 
representations have also been widely used. A shape alphabet 

with fixed resolution was originally proposed in Agrawal et al. 
[1995]. Other symbolic representations have been proposed, 
such as the bit-level approximation [Ratanamahatana et al. 
2005] or the Symbolic Aggregate approXimation (SAX) [Lin 
et al. 2003]; the latter one has been shown to outperform most 
of the other representations [Stiefmeier et al. 2007]. We will 
find shortly a detailed overview of representations distance 
measures and indexing techniques. 
 

II. CLUSTERING 
 

Clustering is the process of finding natural groups, 
called clusters, in a dataset. The objective is to find the most 
homogeneous clusters that are as distinct as possible from 
other clusters. More formally, the grouping should maximize 
intercluster variance while minimizing intracluster variance. 
The algorithm should thus automatically locate which groups 
are intrinsically present in the data. Figure 2 depicts some 
possible outputs of a clustering algorithm. It can be seen in 
this figure that the main difficulty concerning any clustering 
problem (even out of the scope of time-series mining) usually 
 

 
 

lies in defining the correct number of clusters. The 
time-series clustering task can be divided into two subtasks. 
 

Clustering can be applied to each complete time 
series in a set. The goal is thus to regroup entire time series 
into clusters so that the time series are as similar to each other 
as possible within each cluster. 
 

There have been numerous approaches for whole 
series clustering. Typically, after defining an adequate 
distance function, it is possible to adapt any algorithm 
provided by the generic clustering topic. Clustering is 
traditionnally performed by using Self-Organizing Maps 
(SOM) [Chappelier and Grumbach 1996], Hidden Markov 
Models (HMM) [Smyth 1997], or Support Vector Machines 
(SVM) [Yoon et al. 2005]. Gaffney and Smyth [1999] 
proposed a variation of the Expectation Maximization (EM) 
algorithm. However, this model-based approach has usually 
some scalability problems and implicitly presupposes the 
existence of an underlying model which is not straightforward 
for every dataset. Using Markov Chain Monte Carlo (MCMC) 
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methods, Frohwirth-Schnatter and Kaufmann [2008] make an 
estimation about the appropriate  ̈ grouping of time series 
simultaneously along with the group-specific model 
parameters. A good survey of generic clustering algorithms 
from a data mining perspective is given in Berkhin [2006]. 
This review focuses on methods based on classical techniques 
that can further be applied to time series. A classification of 
clustering methods for various static data is proposed in Han 
and Kamber [2006] following five categories: partitioning, 
hierarchical, density based, grid based, and model based. For 
the specificities of time-series data, three of these five 
categories (partitioning, hierarchical, and model based) have 
been applied [Liao 2005]. Clustering of time series is 
especially useful for data streams; it has been implemented by 
using clipped data representations [Bagnall and Janacek 
2005], Auto-Regressive (AR) models [Corduas and Piccolo 
2008], k−means [Vlachos et al. 2003], and—with greater 
efficiency—k-center clustering [Cormode et al. 2007]. 
Interested readers may refer to Liao [2005] who provides a 
thorough survey of time-series clustering issues by discussing 
the advantages and limitations of existing works as well as 
avenues for research and applications. 

 
 

In Hebrail and Hugueney [2000], the series are sliced 
into nonoverlapping windows. Their width is chosen by 
investigating the periodical structure of the time series by 
means of a DFT analysis. This approach is limited by the fact 
that, when no strong periodical structure is present in the 
series, nonoverlapping slicing may miss important structures. 
A straightforward way to extend this approach can therefore 
be to extract shorter overlapping subsequences and then 
cluster the resulting set. However, this overlapping approach 
has been shown to produce meaningless results [Keogh et al. 
2003b]. 
 

III. CLASSIFICATION 
 

  The classification task seeks to assign labels to each 
series of a set. The main difference when compared to the 
clustering task is that classes are known in advance and the 
algorithm is trained on an example dataset. The goal is first to 
learn what are the distinctive features distinguishing classes 
from each other. Then, when an unlabeled dataset is entered 
into the system, it can automatically determine to which class 

each series belongs. Figure 3 depicts the main steps of a 
classification task. 

 
There are two types of classification. The first one is 

the time-series classification similar to whole series clustering. 
Given sets of time series with a label for each set, the task 
consists in training a classifier and labeling new time series. 
An early approach to time-series classification was presented 
in Bakshi and Stephanopoulos [1994]. However, it is based on 
simple trends whose results are therefore hard to interpret. A 
piecewise representation was later proposed in Keogh and 
Pazzani [1998]; it is robust to noise and weighting can be 
applied in a relevance feedback framework. The same 
representation was used in Geurts [2001]; it is apparently not 
too robust to outliers. To overcome the obstacle of high 
dimensionality, Jeng and Huang [2008] used singular value 
decomposition to select essential frequencies. However, it 
implies higher computational costs. In a recent study, 
Rodriguez and Kuncheva [2007] compared three types of 
classifiers: nearest neighbor, support vector machines, and 
decision forests. All three methods seem to be valid, though 
highly depending on the dataset at hand. 1-NN classi- fication 
algorithm with DTW seems to be the most widely used 
classifier; it was shown highly accurate [Xi et al. 2006], 
though computing speed is significantly affected by repeated 
DTW computations. To overcome this limitation Srisai and 
Ratanamahatana [2009] proposed a template construction 
algorithm based on the Accurate Shape Averaging (ASA) 
technique. Each training class is represented by only one 
sequence so that any incoming series is compared only with 
one averaged template per class. Several other techniques have 
been introduced, such as ARMA models [Deng et al. 1997] or 
HMM [Zhong and Ghosh 2002]. In the context of clinical 
studies, Lin et al. [2008] enhanced HMM approaches by using 
discriminative HMMs in order to maximize interclass 
differences. Using the probabilistic transitions between fewer 
states results in the patients being aligned to the model and can 
account for varying rates of progress. This approach has been 
applied in Lowitz et al. [2009], in order to detect 
postmyocardial infarct patients. Several machine learning 
techniques have also been introduced such as neural networks 
[Nanopoulos et al. 2001] or Bayesian classification [Povinelli 
et al. 2004] 
 

IV. SEGMENTATION 
 
     The segmentation (or summarization) task aims at 
creating an accurate approximation of time series, by reducing 
its dimensionality while retaining its essential features. Figure 
4 shows the output of a segmentation system. Section 4.2 will 
show that most time-series representations try to solve this 
problem implicitly. 
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The objective of this task is thus to minimize the 

reconstruction error between a reduced representation and the 
original time series. The main approach that has been 
undertaken over the years seems to be Piecewise Linear 
Approximation (PLA) [Shatkay and Zdonik 1996]. The main 
idea behind PLA is to split the series into most representative 
segments, and then fit a polynomial model for each segment. 
A good review on the most common segmentation methods in 
the context of PLA representation can be found in Keogh et al. 
[2003a]. Three basic approaches are distinguished. In sliding 
windows, a segment is grown until it exceeds some error 
threshold [Shatkay and Zdonik 1996]. This approach has 
shown poor performance with many real-life datasets [Keogh 
et al. 2003a]. The top-down approach consists in recursively 
partitioning a time series until some stopping criterion is met 
[Li et al. 1998]. This approach has time complexity O(n2) 
[Park et al. 1999] and is qualitatively outperformed by bottom-
up. In this approach, starting from the finest approximation, 
segments are iteratively merged [Keogh and Pazzani 1998]. 
Himberg et al. [2001a] present fast greedy algorithms to 
improve previous approaches and a statistical method for 
choosing the number of segments is described in Vasko and 
Toivonen [2002]. 
 

 
 

Several other methods have been introduced to 
handle this task. Palpanas et al. [2008] introduced a 
representation of time series that implicitly handles the 
segmentation of time series. They proposed user-specified 
amnesic functions reducing the confi- dence to older data in 
order to make room for newer data. In the context of 
segmenting hydrological time series. 
 

V. PREDICTION 
 
                    Time series are usually very long and considered 
smooth, that is, subsequent values are within predictable 
ranges of one another [Shasha and Zhu 2004]. The task of 
prediction is aimed at explicitly modeling such variable 
dependencies to forecast the next few values of a series. 
Figure 5 depicts various forecasting scenarios. 
        
           Prediction is a major area in several fields of research. 
Concerning time series, it is one of the most extensively 

applied tasks. Literature about this is so abundant that dozens 
of reviews can focus on only a specific field of application or 
family of learning methods. Even if it can use time-series 
representations and a notion of similarity evaluate accuracy, it 
also relies on several statistical components that are out of the 
scope of this article, for example, model selection and 
statistical learning. This task will be mentioned because of its 
importance but the interested reader willing to have further 
information may consult several references on forecasting. 

 
 

Recent improvements for time-series forecasting 
have been proposed; Pesaran et al. [2006] proposed a 
Bayesian prediction for time series subject to discrete breaks, 
handling the size and duration of possible breaks by means of 
a hierarchical HMM. A dynamic Genetic Programming (GP) 
model tailored for forecasting streams was proposed in 
Wagner et al. [2007] by adapting incrementally based on 
retained knowledge. The prediction task seems one of the 
most commonly applied in real-life applications, considering 
that market behavior forecasting relies on a wealth of financial 
data. Bai and Ng [2008] proposed to refine the method of 
factor forecasting by introducing “targeted predictors” 
selected by using a hysteresis (hard and soft thresholding) 
mechanism. The prediction task has also a wide scope of 
applications ranging from tourism demand forecasting [Song 
and Li 2008] to medical surveillance. 
 

VI.  IMPLEMENTATION COMPONENTS 
 

In this section, we review the implementation 
components common to most time-series mining tasks. As 
said earlier, the three key aspects when managing time-series 
data are representation methods, similarity measures, and 
indexing techniques. Because of the high dimensionality of 
time series, it is crucial to design low-dimensional 
representations that preserve the fundamental characteristics 
of a series. Given this representation scheme, the distance 
between time series needs to be carefully defined in order to 
exhibit perceptually relevant aspects of the underlying 
similarity. Finally the indexing scheme must allow to 
efficiently manage and query ever growing massive datasets. 
 
2.1. Preprocessing 
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In real-life scenarios, time series usually come from 
live observations [Reeves et al. 2009] or sensors [Stiefmeier et 
al. 2007] which are particularly subject to noise and outliers. 
These problems are usually handled by preprocessing the data. 
Noise filtering can be handled by using traditional signal 
processing techniques like digital filters or wavelet 
thresholding. In Himberg et al. [2001b], Independent 
Component Analysis (ICA) is used to extract the main mode 
of the series. As will be explained in Section 4.2, several 
representations implicitly handle noise as part of the 
transformation.  
     

The second issue concerns the scaling differences 
between time series. This problem can be overcome by a 
linear transformation of the amplitudes [Goldin and Kanellakis 
1995]. Normalizing to a fixed range [Agrawal et al. 1995] or 
first subtracting the mean (known as zero mean/unit variance 
[Keogh et al. 2001a]) may be applied to both time series, 
however, it does not give the optimal match of two series 
under linear transformations [Argyros and Ermopoulos 2003]. 
In Goldin et al. [2004] the transformation is sought with 
optional bounds on the amount of scaling and shifting. 
However, normalization should be handled with care. As 
noted by Vlachos et al. [2002], normalizing an essentially flat 
but noisy series to unit variance will completely modify its 
nature and normalizing sufficiently small subsequences can 
provoke all series to look the same. 
 
2.2. Representation  
 

As mentioned earlier, time series are essentially high-
dimensional data. Defining algorithms that work directly on 
the raw time series would therefore be computationally too 
expensive. The main motivation of representations is thus to 
emphasize the essential characteristics of the data in a concise 
way. Additional benefits gained are efficient storage, speedup 
of processing, as well as implicit noise removal. These basic 
properties lead to the following requirements for any 
representation:  
 
—significant reduction of the data dimensionality;  
—emphasis on fundamental shape characteristics on both local 
and global scales;  
—low computational cost for computing the representation;  
—good reconstruction quality from the reduced 
representation; —insensitivity to noise or implicit noise 
handling. 
 
          Many representation techniques have been investigated, 
each of them offering different trade-offs between the 
properties listed before. It is, however, possible to classify 
these approaches according to the kind of transformations 

applied. In order to perform such classification, we follow the 
taxonomy of Keogh et al. [2004] by dividing representations 
into three categories, namely non data adaptive, data adaptive, 
and model based. 
 
2.1.1 Nondata Adaptive:  
 

In nondata-adaptive representations, the parameters 
of the transformation remain the same for every time series 
regardless of its nature. The first nondata-adaptive 
representations were drawn from spectral decompositions. The 
DFT was used in the seminal work of Agrawal et al. [1993]. It 
projects the time series on a sine and cosine functions basis 
[Faloutsos et al. 1994] in the real domain. The resulting 
representation is a set of sinusoidal coefficients. Instead of 
using a fixed set of basis functions, the DWT uses scaled and 
shifted versions of a mother wavelet function [Chan and Fu 
1999]. This gives a multiresolution decomposition where low 
frequencies are measured over larger intervals thus providing 
better accuracy [Popivanov and Miller 2002]. A large number 
of wavelet functions have been used in the literature like Haar 
[Chan et al. 2003], Daubechies [Popivanov and Miller 2002], 
or Coiflets [Shasha and Zhu 2004]. The Discrete Cosine 
Transform (DCT) uses only a cosine basis; it has also been 
applied to time-series mining [Korn et al. 1997]. However, it 
has been shown that it does not offer any advantage over 
previously cited decompositions [Keogh et al. 2004]. Finally, 
an approximation by Chebychev polynomials [Cai and Ng 
2004] has also been proposed but the results obtained have 
later been withdrawn due to an error in implementation. 
 
2.2.2 Data Adaptive: 
                             

 This approach implies that the parameters of a 
transformation are modified depending on the data available. 
By adding a data-sensitive selection step, almost all nondata-
adaptive methods can become data adaptive. For spectral 
decompositions, it usually consists in selecting a subset of the 
coefficients. This approach has been applied to DFT [Vlachos 
et al. 2004] and DWT [Struzik et al. 1999]. A data-adaptive 
version of PAA has been proposed in Megalooikonomou et al. 
[2004], with vector quantization being used to create a 
codebook of recurrent subsequences. This idea has been 
adapted to allow for multiple resolution levels 
[Megalooikonomou et al. 2005]. However, this approach has 
only been tested on smaller datasets. A similar approach has 
been undertaken in Stiefmeier et al. [2007] with a codebook 
based on motion vectors being created to spot gestures. 
However, it has been shown to be computationally less 
efficient than SAX. 
2.2.3. Model Based: 
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The model-based approach is based on the 
assumption that the time series observed has been produced by 
an underlying model. The goal is thus to find parameters of 
such a model as a representation. Two time series are therefore 
considered similar if they have been produced by the same set 
of parameters driving the underlying model. Several 
parametric temporal models may be considered, including 
statistical modeling by feature extraction [Nanopoulos et al. 
2001], ARMA models [Kalpakis et al. 2001], Markov Chains 
(MCs) [Sebastiani et al. 1999], or HMM [Panuccio et al. 
2002]. MCs are obviously simpler than HMM so they fit well 
shorter series but their expressive power is far more limited. 
The time-series bitmaps introduced in Kumar et al. [2005] can 
also be considered as a model-based representation for time 
series, even if it mainly aims at providing a visualization of 
time series. 
 

VII. CONCLUSION 
 

The time-series data mining, an incredible wealth of 
systems and algorithms has been proposed. The ubiquitous 
nature of time series led to an extension of the scope of 
applications simultaneously with the development of more 
mature and efficient solutions to deal with problems of 
increasing computational complexity. Time-series data mining 
techniques are currently applied to an incredible diversity of 
fields ranging from economy, medical surveillance, climate 
forecasting to biology, hydrology, genetics, or musical 
querying. Numerous facets of complexity emerge with the 
analysis of time series, due to the high dimensionality of such 
data, in combination with the difficulty to define an adequate 
similarity measure based on human perception 

 
           As for most scientific research, trying to find the 
solution to a problem often leads to raising more questions 
than finding answers. We have thus outlined several trends 
and research directions as well as open issues for the near 
future. The topic of time-series data mining still raises a set of 
open questions and the interest of such research sometimes 
lies more in the open questions than the answers that could be 
provided. 
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