
IJSART - Volume 3 Issue 7 –JULY 2017 ISSN [ONLINE]: 2395-1052

Page | 10 www.ijsart.com

Multi Failure Analysis In Parallel Processing Using
Gift Tool

KR.Senthil Murugan1 , V.Karpagam2

Department of Computer Science and Engineering
1Assistant Professor,Sri Krishna College Of Engineering and Technology, Coimbatore,Tamilnadu,India

2Assistant Professor(Sr.Gr.),KLNCEMadurai, TamilNadu, Inida

Abstract-As the size of large-scale computer systems
increases, their mean-time-between-failures are significantly
shorter than the execution time of many current scientific
applications. To complete the execution of scientific
applications, they must tolerate hardware failures.
Conventional rollback-recovery protocols redo the
computation of the crashed process since the last checkpoint
on a single processor. As a result, the recovery time of all
protocols is no less than the time between the last checkpoint
and the crash. In this paper, we propose a new application-
level fault-tolerant approach for parallel applications called
the Fault-Tolerant Parallel Algorithm (FTPA), which provides
fast self-recovery. When fail-stop failures occur and are
detected, all surviving processes recompute the workload of
failed processes in parallel. FTPA requires the user to be
involved in fault tolerance. Get it Fault-Tolerant (GiFT), a
source-to-source precompiler tool to automate the FTPA
implementation. The experimental results show that the
performance of FTPA is better than the performance of the
traditional check pointing approach.

Keywords-Fault tolerance, fault-tolerant parallel algorithm,
fast self-recovery, parallel recomputing.

I. INTRODUCTION

The size of high-performance computers from
thousands to tens of thousands and even to hundreds of
thousands of processors. Now, the fastest computer system in
the world, IBM’s Roadrunner, has 6,562 dual-core AMD
Opteron chips, as well as 12,240 Cell chips [1]. However, as
the complexity of a computer system increases, its mean-time
between- failure (MTBF) is drastically decreased. The Google
Cluster, using about 8,000 nodes, experiences a node failure
rate of 2 percent-3 percent per year. This can be translated to a
node failure every 36 hours [3]. On the other hand, many
scientific applications are designed to run for weeks or even
months. Therefore, the MTBF of these computers is becoming
significantly shorter than the execution time of many current
scientific applications. To complete the execution of such
applications, they must tolerate hardware failures.

Check pointing is widely used in the domain of large
scale systems, which periodically saves the state of a
computation to a stable storage [4], [5]. Check pointing
requires a cold restart of the entire parallel job when a process
failed. In cold restart, a complete reload of all processes in the
parallel job is conducted. Then, all processes have to roll back
to the last checkpoint to restart the computation from there.
Current fault-tolerant protocols redo the computation of the
crashed process since the last checkpointon a single processor
[6]. As a result, the recovery time of all protocols is no less
than the time between the last checkpoint and the crash. To
avoid the cold restart and to speed up the recovery procedure,
we propose a new application-level fault tolerant approach
called the Fault-Tolerant Parallel Algorithm(FTPA) [7]. FTPA
is a parallel algorithm that provides fast self-recovery. When a
process failure is detected, FTPA redistributes the workload of
the failed process to the surviving processes, which then
recompute the workload in parallel. Parallel recomputing
speeds up the recovery
procedure.

II. RELATED WORK

Rollback recovery is a popular mechanism to
incorporate fault tolerance into large-scale scientific
applications [4], [6],[8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18].

Check pointing and message logging are two main

rollback recovery techniques. Check pointing techniques can
be classified into system level and application level. System-
Level Check pointing (SLC) requires that all processes
periodically checkpoint themselves by saving the content of
their address space (including all values in the stack,heap, and
global variables), registers, and the state of communication
library to stable storage. In a system including tens and even
hundreds of thousands of processors, terabytes of data might
be transmitted to the stable storage through I/O components on
one checkpoint.

In message-logging-based techniques [3], only the

failed process needs to roll back to the last checkpoint, and
surviving processes need not roll back but replay the messages

IJSART - Volume 3 Issue 7 –JULY 2017 ISSN [ONLINE]: 2395-1052

Page | 11 www.ijsart.com

sent before failure to help failure recovery. This technique
requires all processes to either save a copy of each message it
sends or regenerate the messages on demand using approaches
like reversible computation. overhead of writing checkpoint
data. This method introduces Application-level check
pointing(ALC)[7], aims at reducing the checkpoint size.

ALC provides the opportunity for users to save the

minimum amount of data necessary to recover the program
state. For applications on most platforms such as the IBM
Blue Gene and the ASCI machines, ALC is the default
approach for tolerating hardware failures. ALC complicates
the coding of application programs, and it requires a user to
guarantee the consistency of the global state and to decide
what state needs to be saved. In automating ALC and designed
the semiautomatic system C3. C3 is a coordination protocol
that guarantees checkpoint consistency for the application-
level coordinated non blocking check pointing of MPI
programs. C3 saves the entire state when it makes a
checkpoint. ALEC determines what state needs to be saved at
each checkpoint and inserts code to save the state and to
restore it during recovery.

There are usually two aspects in rollback-recovery

protocols requiring improvement: 1) The current protocol
requires a cold restart of the entire parallel job, which results
in a long response time for users, and 2) The workload of the
crashed process since the last checkpoint is recomputed on a
single processor.

III. THE FAULT-TOLERANT PARALLEL
ALGORITHM

This section describes the basic idea and design

methodology of FTPA. In this paper, A scientific application
is an SPMD-style program where all processes use the same
program operating on a different part of the same data
structure, and it coordinates and synchronizes execution
through explicit message passing. A scientific application has
a good load balance and regular communication patterns.

3.1 Basic Idea

FTPA is a parallel algorithm that can achieve fast self
recovery.FTPA saves data at data-saving points for correct
recovery during its execution. When a process fails, the failure
will be detected by all surviving processes, which will re-
execute the work lost on the failed process in parallel.

The definition of FTPA. Logically, a parallel
program has a certain number of program sections, which are
code fragments of the parallel program. parallel algorithm has

program sections S0; S1; _ _ _ ; Sn. The design of FTPA
allows the manipulation of each program section into a fault-
tolerant program section with the insertion of a data saving
section, a failure detectionsection, and a recovery section, as
shown in Fig. 1.

Fig. 1. Skeleton of a fault-tolerant program section.

The data-saving section needs to save data, which is

a set of variables involved in the execution of the application
to guarantee correct recovery for a parallel application.

The failure detection section checks the system

failure vector FV to make it aware which process has failed.
Let N denote the number of processes participating in the
execution of an application; then, FV is an N-tuple, <F0; F1; _
_ _ ; FN_1> , where Fi represents the failure type of the
process Pi.

The recovery section is implemented by

transforming, following the SPMD programming paradigm,
the original program section. Let Wj Sk be the workload of the
failed process Pj that executes the program section Sk, and Wi
RSk be the workload on every surviving process that executes
the recovery section RSk corresponding to Sk.

IJSART - Volume 3 Issue 7 –JULY 2017 ISSN [ONLINE]: 2395-1052

Page | 12 www.ijsart.com

Fig. 2a represents how FTPA works.

FSk denotes the fault-tolerant program section related

to Sk, while the data saving section and failure detection
section in FSk are SSk and DSk, respectively. The FTPA
application saves data in its data-saving section. If process Pj
fails when executing the program section Sk, all other
processes will detect the failure when they finish the execution
of Sk.

The FTPA application’s execution transfers to the

recovery section to perform parallel recomputing. Thus,
FTPA is an automatic fault-tolerant approach through
algorithm design. It automatically detects possible failures and
performs recovery upon failures. FTPA versus
checkpoint/restart. To assist in a comprehensive understanding
of FTPA’s principle,
The primary difference between FTPA and check pointing is
in how the failure is recovered, with the trade-off being that
check pointing is simpler and FTPA is faster.

Fig. 2b shows how check pointing works. During the

execution of an application, each process in the system saves
its local computational state. If Pj fails, the application is
restarted from a recently stored computational state, meaning
all processes roll back and restart from the computational
state. Relative to this, FTPA has a fast self recovery.

3.2 Partitioning a Program into Program Sections

A communication statements to partition a parallel
program into program sections. In the partitioning method, if a
branch structure contains communication statements and its
conditional expression is related to the process rank, the
branch structure is treated as a single communication
statement. The following method can be used to partition a
parallel program into program sections:

1. Determine the set of leaders, which are the first
statements of program sections. The rules are given as
follows:

a. The first statement of a program is a leader.
b. The statement that immediately follows a

communication statement is a leader.
2. For each leader, it defines a program section that consists

of the leader and all statements up to but not including the
next leader or the end of the program.

3.3 Failure Detection Section Design Methodology

The failure detection section consists of routines

perceiving possible failures according to the status of FV,
which is determined by the parallel runtime environment. The
failure detection routine has barrier synchronization semantics.
A failure detection routine is inserted before the
communication routine in each program section or prior to the
termination statement of a parallel program, where the failure
detection routine exploits the natural synchronization of
scientific applications.

3.4 Data-Saving Section Design Methodology

To guarantee the correctness of the recovery, some

variables required during recovery need to be saved in the data
saving section. The design of the data-saving section is such
that it can choose the variables. The variables to be saved in
the data-saving section are used to recover the local
computation of the failed processThese variables are defined
prior to the program section. The definition of each variable,
there is an element located at the point within or following the
program section, i.e., the variables are live at the point
immediately before the program section. Every process has to
save live variables on the disk at the entrance of the program
section.

3.5 Recovery Section Design Methodology

The recovery section consists of the data recovery

code and the parallel recomputing code. The former is used to
restore the saved data in the data-saving section. The latter is
used to recompute the workload of a program section executed
on the failed process. The parallel recomputing code only
parallelizes the loops in the original program
section, while the remaining parts of the program section are
recomputed serially.

IV. A TOOL FOR AUTOMATING FTPA
IMPLEMENTATION

4.1 Overview of the Tool

IJSART - Volume 3 Issue 7 –JULY 2017 ISSN [ONLINE]: 2395-1052

Page | 13 www.ijsart.com

FTPA is an application-level fault-tolerant approach.
The requirements for users are that they choose program
sections and design failure detection sections, data-
savingsections, and recovery sections. The inclusion of the
three sections of code in the application increases the user
burden and reduces productivity. In order to ease the FTPA
implementation, we develop GiFT, a source-to-source
precompiler tool to transform an MPI/Fortran or MPI/C
program with user-instrumented compiler directives into its
FTPA version. The framework of GiFT is shown in Fig.3.

Fig 3 - Framework of the precompiler

GiFT is comprised of five components:

a front end, a failure detection section generator, a data-saving
section generator, a recovery section generator, and a merger.

Front end.

The front end of GiFT is a modified version of gcc _ 4:2:1. It
is used to identify the instrumented compiler directives and
generate the symbol table and syntax tree for FORTRAN and
C languages.

Failure detection section generator.

The failure detection section generator is used to produce the
code of failure detection.

Data-saving section generator.

The data-saving section generator is used to figure out the
variables necessary to be saved through control-flow analysis
and data-flow analysis. It is also used to generate the code for
saving them.

Recovery section generator.

The recovery section generator produces two code fragments:
the data recovery code and the parallel recomputing code.

Merger.

The merger inserts the code of the above three
sections into the proper places in a program section and turns
it into a fault-tolerant program section.

4.2 Determining Program Sections

Program sections significantly determine the
performance of the program’s FTPA version. Theoretically, a
program section may be the whole program or as little as a
single statement. Should a program have several large
program sections, its corresponding recovery section has a
heavywork load, An MPI program is partitioned according to
where some communication routines naturally occur in the
program.

These communication routines include blocking
point-to point communication routines MPI_Send/MPI_Recv
and the completion routines MPI_Wait/MPI_Waitall which
are used to complete non blocking send and receive, and all
collective communication routines. To achieve an optimal
program section size, the partitionedprogram sections can be
split and combined. The program sections finally used by
FTPA are produced by partitioning the original program or by
splitting and combining the partitioned program sections:

1. Splitting a program section.

To reduce the workload of its corresponding recovery
section, a large program section whose size is larger than the
optimal program section size can be split into smaller ones.

2. Combining program sections.

To reduce the overhead of data saving, adjacent small
program sections can be combined into a larger one, and the
size of the combined one cannot exceed the optimal program
section size.

A compiler directive CKPT HERE denotes an entry
of a program section and also marks a state-saving point to
save the live variables.

4.3 The Failure Detection Section Generator

The failure detection routine in GiFT is detect error,
which detects the failure by the parallel runtime environment
and includes barrier synchronization semantics.

IJSART - Volume 3 Issue 7 –JULY 2017 ISSN [ONLINE]: 2395-1052

Page | 14 www.ijsart.com

4.4 The Data-Saving Section Generator

The generator consists of control-flow analysis and
data flow analysis followed by a data-saving code generator.

The control-flow analysis phase provides the
foundation for data-flow analysis and constructs control-flow
graph representations of MPI programs.

The data-flow analysis phase aims at obtaining the
variables that need to be saved in the data-saving section.

To perform data-flow analysis for an MPI program,
the inter procedural data flow is a concern. Subroutines and
functions present in an MPI program can be divided into three
categories: user-defined, intrinsic, and MPI calls.

A data-saving code generator produces the code for

saving variables obtained in the data-flow analysis.

4.4.1 Control-Flow Analysis

Most MPI programs do not have all of their MPI
statements in one subroutine. A constructing an MPI-Inter
procedural Control-Flow Graph (MPI-ICFG). They built the
MPI-ICFG by first constructing an Interprocedural Control-
Flow Graph (ICFG) and then adding communication edges
between the MPI communication routines. A more effective
strategy is to copy the control-flow graph for each process,
provideeach process with its own variable namespace, model
communication with global shared variables, and propagate
data-flow information over communication edges. However,
this approach is not scalable.

We constructed an MPI-Branch-based ICFG (MPI-

BICFG) according to process-rank-based conditional
statements.

4.4.3 The Data-Saving Code Generator

The generator generates the data saving code that is used to
save the following two categories of variables:

 State-saving points.
 Definition points

4.5 The Recovery Section Generator

The code of the recovery section consists of the data

recovery code and the parallel recomputing code. In the
implementation of the recovery section, assume that when a
processPjfails, a new process named recovered process is
restarted to replace the failed one, and all surviving processes

keep their old rank numbers. The processes involved in
parallel recomputing are named recomputing processes.

4.5.1 The Data Recovery Code

The data recovery code is used to save the two
categories of variables. The first is the live variables at state-
saving points, and the second is the variables defined at
definitionpoints that are on the inter process ud chains of the
uses. The first is used to recover the local computation of the
failed process, and the second is used to recover the data
received by that process.

A code template is inserted at the beginning of every

subroutine or function that can reach a CKPT_HERE. This
code template will check whether the execution is restarted
and read the saved live variables to recover the local
computation if the processes fail.

V. CONCLUSIONS

In this paper, the concept of FTPA, which is a
parallel algorithm, to achieve fast self-recovery. FTPA
achieves fast failure recovery by using multiple surviving
processes to re-execute the work lost on the failed process in
parallel. However, it requires the user to be involved in fault
tolerance. In order to ease the FTPA implementation, we
developed GiFT, a source-to-source precompiler tool to
automate the FTPA implementation. Through rank-based
control-flow analysis and data-flow analysis, GiFT reduces the
overhead of data saving.

REFERENCES

[1] IBM Roadrunner, http://www.ibm.com/, 2008.
[2] D.A. Reed, C. da Lu, and C.L. Mendes, “Reliability

Challenges in Large Systems,” Future Generation
Computer Systems, vol. 22, no. 3, pp. 293-302, 2006.

[3] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G.
Fedak, C.Germain, T. Herault, P. Lemarinier, O.
Lodygensky, F. Magniette,

[4] V. Neri, and A. Selikhov, “MPICH-V: Toward a Scalable
Fault Tolerant MPI for Volatile Nodes,” Proc.
ACM/IEEE Conf. Supercomputing (Supercomputing
’02), pp. 1-18, 2002.

[5] E.N. Elnozahy, L. Alvisi, Y.M. Wang, and D.B. Johnson,
“A Survey of Rollback-Recovery Protocols in Message-
Passing Systems,” ACM Computing Surveys, vol. 34, no.
3, pp. 375-408, 2002.

[6] A.N. Norman, C. Lin, and S.-E. Choi, “Compiler-
Generated Staggered Check pointing,” Proc. Seventh
ACM Workshop Languages, Compilers, and Runtime

IJSART - Volume 3 Issue 7 –JULY 2017 ISSN [ONLINE]: 2395-1052

Page | 15 www.ijsart.com

Support for Scalable Systems (LCR ’04), pp. 1-8, Oct.
2004.

[7] S. Chakravorty and L.V. Kale, “A Fault Tolerance
Protocol with Fast Fault Recovery,” Proc. 21st IEEE Int’l
Parallel and Distributed Processing Symp. (IPDPS ’07),
pp. 120-128, Mar. 2007.

[8] X. Yang, Y. Du, P. Wang, H. Fu, J. Jia, Z. Wang, and G.
Suo, “The Fault Tolerant Parallel Algorithm: The Parallel
Recomputing Based Failure Recovery,” Proc. 16th Int’l
Conf. Parallel Architectures and Compilation Techniques
(PACT ’07), pp. 199-209, 2007.

