
IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 66 www.ijsart.com

Component Object Model: An Overview & Practical
Implementation

Sanjeev Kumar1, Alok Mall2, Ratnakar Awasthi3, KC Tripathi4, Shubha Lakshmi5

1Scientist ‘D’, DMSRDE, Kanpur,
2Scientist ‘G’, DOP DRDO HQr, New Delhi,

3Scientist ‘F’, JCB, DRDO, New Delhi,
4Technical Officer ‘A’, DMSRDE, Kanpur,

5Avinashilingam University for Women, Coimbatore, Tamil Nadu (India)

Abstract- The Component Object Model (COM) is a system
technology that originated with Windows, but has begun to
propagate to other platforms (the Macintosh, Compaq/Digital
VMS, Compaq Digital Unix, Solaris, other Unix flavors,
mainframes, etc.) as well. Its purposes for software developers
are multi-fold. The paper presents an overview of COM
technology and concentrates on its advantages, which have
made it one of the most versatile and indispensable
technologies of today. The paper also carries a short
description of an example project created using Microsoft
Visual C++ based on COM and OLE features. The project
automates MICROSOFT EXCEL, creating a worksheet and
chart based on the input provided by the user. This model is
being used for data analysis, visualization and data storage of
wide range of materials being used for structural, stealth and
polymer in defence application.

Keywords- Component Object Model, COM Technology, OLE,
Active X, Distributed COM

I. INTRODUCTION

A. OLE – An Overview

Object Linking and Embedding (OLE) is a
distributed object system and protocol developed by
Microsoft. OLE is the technology which allows an object (e.g.
a spreadsheet) to be embedded (and linked) inside another
document (e.g. a word processor document).

The main benefit of OLE is that references to data in
the master file can be made and the master file can then have
the changed data which will in turn affect the referenced
document.

Its primary use is for managing compound
documents, but it is also used for transferring data between
different applications using drag and drop and clipboard
operations. The concept of "embedding" is also used for
embedding multimedia in Web pages, which tend to embed

video, animation (include Flash animation), and music files
within the HTML code.
B. Evolution of OLE

OLE 1.0, released in 1991, was the first wildly adapted
specification for developing component-document
applications. It was the evolution of the original dynamic data
exchange (DDE) concepts which Microsoft developed for
earlier versions of Windows. While DDE was limited to
transferring limited amounts of data between two running
applications, OLE was capable of maintaining active links
between two documents or even embedding one type of
document within another.

OLE 1.0 later evolved to become architecture for
software components known as the component object model
(COM) which further graduated to Distributed Component
Object Model (DCOM).

OLE 2.0

Released in early 1993, it provided a much richer
compound document model (i.e. the containing multiple data
types like text, video, graphics etc.), as well as OLE
automation, OLE drag and drop and generic services.

At the core of OLE 2.0 is the Component Object
Model (COM), a specification that allows developers to design
interfaces that enable interaction among components. In fact,
OLE 2.0 is simply a set of COM interfaces designed by
Microsoft.

ActiveX

In 1996, Microsoft renamed the OLE 2.0 technology
as ActiveX. This version of OLE is commonly used by Web
designers to embed multimedia files in Web pages.

C. An Overview Of Com And Com Related

Terminologies

IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 67 www.ijsart.com

A component software architecture from Microsoft,
which defines a structure for building program routines
(objects) that can be called up and executed in a Windows
environment.

Some parts of Windows and Microsoft developed
applications are also built as COM objects. COM provides the
interfaces between objects, and Distributed COM (DCOM)
enables them to run remotely.

COM was designed with C++ programming
environment in mind. It supports encapsulation,
polymorphism, and reusability. However, COM was also
designed to be operating at compatible at the binary level and
therefore is different from a C++ object. Generally, the high
level programming languages such as C, C++, PASCAL, and
ADA are machine-dependent. As a binary object, a COM
object concentrates on its interface with other objects. When
not used in the environment of its creator, an interface is
exposed that can be seen in the non-native foreign
environment. It can be seen because it is a binary object and
therefore not machine-dependent. This does not require the
host environment or an interacting object to know anything
about the COM object. It is important to note that COM is not
a programming language; it is a binary standard that enables
software components to interact with each other as objects.
COM is not specific to any particular programming language.
COM can work with any language that can support the binary
layout of a COM object. It is a programming model to
facilitate the programmability related to this standard.

COM is used in the following ways:

1. COM Objects

COM objects can be small or large. They can be
written in several programming languages, and they can
perform any kind of processing. A program can call the object
whenever it needs its services. Objects can be run remotely
(DCOM) over the network in a distributed objects
environment, as illustrated in Fig.1.

2. Automation (OLE automation)

Standard applications, such as word processors and
spreadsheets, can be written to expose their internal functions
as COM objects, allowing them to be "automated" instead of
being manually selected from a menu. For example, a script
could be written to extract data from a database, summarize it
and draw the graphics from a spreadsheet and place the results
into a text document.

3. Controls (OLE controls, ActiveX controls)

Applications can invoke COM objects, called
"controls," that blend in and become just a part of the
program. ActiveX controls can also be downloaded from the
Internet to make a Web page perform any kind of processing.

4. Compound Documents and ActiveX Documents

Microsoft's OLE compound documents are based on
COM, which lets one document be embedded within or linked
to another. ActiveX Documents are extensions to OLE that
allow a Web browser, for example, to view not only Web
pages, but any kind of document.

5. Programming Interfaces

Increasingly, Microsoft is making its standard
programming interfaces conform to the COM object model so
that there is continuity between all interfaces.

D. About DCOM

Microsoft's Distributed COM (DCOM) extends the

Component Object Model (COM) to support communication
among objects on different computers—on a LAN, a WAN, or
even the Internet. With DCOM, an application can be
distributed at locations which are required by the customer and
the application. Because DCOM is a seamless evolution of
COM, one can take advantage of the existing investment in
COM-based applications, components, tools, and knowledge
to move into the world of standards-based distributed
computing. In the process, DCOM handles low-level details of
network protocols so one can focus on the real business thus
providing great solutions to the customers.

IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 68 www.ijsart.com

E. Practical Implementation Of Com Objects

COM objects consist of two types of items, namely

properties and methods. Properties are the data members,
while the methods are member functions. COM objects
completely hide their data and expose their methods through a
construct called an interface, as demonstrated in Fig. 2, 3 and
4 respectively. A COM interface is a grouping of related
methods that is uniquely identified for all programs and all
time (by an Interface ID). Interfaces are used to encapsulate
COM object feature sets.

The most fundamental feature of COM is multiplicity

of use of COM objects. The IUnknown interface exposes this
feature set in several methods (AddRef, Release, and
QueryInterface) which determine the common behavior
governing all COM object lifetimes and the way in which
interfaces on COM objects are acquired. This interface is the
main interface for all other interfaces and is the base class
from which all other COM interfaces are derived. No matter
what they do, all COM objects have to implement the
IUnknown interface compulsorily.

Each object implements a vtable (shown in Fig. 5). A
vtable is nothing more than an array of pointers to member
functions implemented in the object. This vtable is shared
between all the instances of the object also maintaining the
private data of each object. A client application evokes an
instance of the interface and gets a pointer to a pointer that
point to the vtable. Each time a new interface to the object is
instantiated, the reference count of objects is incremented with
AddRef(). Conversely, each time a reference is destroyed, the
reference counter is decremented with Release(). Once the
reference count is zero, the object can be destroyed. In order to
see what interfaces an object supports, one can use
QueryInterface().

IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 69 www.ijsart.com

F. Structured Storage

Most computing platforms today have heterogeneous
file systems, making sharing data difficult. In addition, these
file systems originated during the mainframe days when only a
single application was able to update and in some cases access
that data too. COM is built with interoperability and
integration between applications on dissimilar platforms in
mind. In order to accomplish this, COM needs to have
multiple applications write data to the same file on the
underlying file system. Structured Storage addresses this need.

Structured Storage is a file system within a file itself.
One can visualize it as a hierarchical tree of storages and
streams, as shown in Fig. 6. In this tree, each node has one and
only one parent, but each node may have from Zero to several
children. The folders are the storage nodes, and the files are
the streams. Structured Storage provides an organization chart
of data within a file. In addition, this organization of data is
not limited to files, but includes memory and databases as
well.

 Stream objects contain data, much like files in a
traditional file system. This data can be either native data or
data from outside objects. Storage objects are compatible at
the binary level; thus, in theory, they are compatible across
platforms that support COM and OLE.

F. Monikers (Persistent Naming)

Monikers are a way of referencing a piece of data or
object in an object-based system such as COM. The original
use for monikers was in OLE linking. When an object is
linked, a moniker is stored that knows how to get to that native
data. For example, if you link a sound file into a Word
document, the WAV file is not stored natively in that
document. A moniker is created that can intelligently find the
WAV file object. One can think of a moniker as a mapping.

However, a moniker is more than just a name—a moniker is a
COM object.

G. AUTOMATION: MAKING TASKS EASIER AND

QUICKER

Automation basically enables one to manipulate the
properties and methods of an application from within another
application through the use of high-level macro languages and
scripting languages such as VBScript and JavaScript. This
enables one to customize objects and provide interoperability
between applications.

In the world of Automation (formally known as OLE
automation), there are Automation Servers and Automation
Controllers. An Automation Server is a component or
application that exposes properties and methods for use by
other applications. Microsoft Excel is a good example of an
Automation Server, because it exposes services that can create
and manipulate worksheets, cells, and rows. Various forms of
Automation are further elaborated in Fig.7.

Description of the properties and methods that are
available through an Automation Server are available in an
Interface Definition Language (IDL) file or can be made
available as a type library. A type library is a binary
representation of the information in an IDL file, although it
has slightly lower fidelity.

In Visual C++ (6.0), there is a utility named OLE
View that reads and graphically displays the contents of type
libraries. One can use this utility to display the properties and
methods exposed by Automation Servers.

Automation Controllers are client applications which
use the properties and methods exposed by Automation
Servers. Automation Controllers work through an interface
called IDispatch. All interfaces that support Automation are
derived from IDispatch.

There are three basic ways in which we can use
Automation: MFC, #import, and C/C++:

1. With MFC, Visual C++ ClassWizard is used to generate

"wrapper classes" from the Microsoft Office type
libraries. These classes, as well as other MFC classes,
such as COleVariant, COleSafeArray, COleException,
simplify the tasks of Automation. This method is usually
recommended over the others, and most of the Microsoft
Knowledge Base examples use MFC.

IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 70 www.ijsart.com

2. In the project demonstrated, this method has been used to
automate Microsoft excel.

3. #import, a new directive that became available with

Visual C++ 5.0, creates VC++ "smart pointers" from a
specified type library. It is very powerful, but often not
recommended because of reference-counting problems
that typically occur when used with the Microsoft Office
applications.

4. C/C++ Automation is more difficult, but sometimes

necessary to avoid overhead with MFC, or problems with
#import. Basically, we work with such APIs as
CoCreateInstance(), and COM interfaces such as
IDispatch and IUnknown.

It is important to note that there are slight differences

between Automation from C++ compared to conventional C,
because COM was built around the C++ classes.

 Thus, automation enables tasks that are normally
selected from menus to be automatically executed. For
example, a small script could be written to extract data from a
database, put it into a spreadsheet, summarize and chart it, all
without Manual intervention.

 Virtually any internal routine can be written as a
COM object and its interfaces exposed to other programs.
Microsoft applications such as Word and Excel are written as
COM objects, and they not only allow their functions to be
automated, but offer programmers a toolbox of functions that
can save them the time and effort of writing similar routines.

The essence of automation lies in the fact that stand-
alone application like Excel has many mathematical,
statistical, charts and financial functions. Other applications
can take advantage of these functions simply by calling Excel
through the program. The end user is oblivious of the fact that
Excel is being used.

II.IMMEDIATE APPLICATION IN DEFENCE (R&D)

This model is being used for data analysis,
visualization and storage of wide range of materials having
direct defence application. The model helps in segregating,
grouping and extraction of information pertaining to defence
materials especially in structural, stealth and polymers
application. The model further aids in better visualization of
the data pertaining to these materials. Data storage,
visualization and portability would be very cumbersome using
conventional development environment like C++, Java etc.

The scheme we have created uses the class wrappers
generated from EXCEL 2002 object library .The application is
created using MFC(Microsoft foundation class) and excel type
library. It is a generalized version of automating component
integration with COM compliant application such as the
Microsoft Office Applications.

The objective here is to automate MS EXCEL 2002.
The application prompts the user to enter parameters for 2
variables and then generate values for the variables based on
the input by the user. The dialog box created is shown in
Fig.8. It then creates a pie chart, line chart, bar chart or a XY
scattered chart based on the choice of the user, as shown in
Fig. 9 and Fig. 10.

IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 71 www.ijsart.com

2.1 Development Tools and Environment

MFC Application Wizard (Appwizard) is used to
create the dialog based application. Idispatch interfaces and
member functions defined in the excel.exe type library are
used. The Generated class wrappers are derived from
coledispatchdriver, And The appropriate declaration header
file is named excel.h. additional codes and functionalities were
added to load and enable com services library. The project was
created in microsoft visual c++ 6.0 environment.

2.2 Significance of Idispatch Interface in the Context of
Project

Ole automation controllers use the ole idispatch
interface to gain access to objects that implement this
interface. Idispatch keeps track of object members (methods
and properties) by the dispatch id(dispid). Before an ole
automation controller can find a method or a property, It must
have a dispid that maps to the name of the mumber. Then it
calls idispatch::invoke to locate property or invoke the
method, packaging the parameters for property or methods
into one of idispatch::invoke parameters. At run time,
controllers get dispids by calling the idispatch::getidofnames
function. this is called late binding because controller binds to
the property or method at run time.

Here, Since Object is described in a type library, An
Ole Automation Controller reads the dispids from the type
library at the compile time. This is called id binding. call to
getidofnames is avoided. Since it requires only one call to
idispatch rather than 2 calls required by late binding, id
binding is generally about twice as fast. Id binding is
advantageous as performance is better since no binding are
required at run time, So we get better performance in terms of
compile time. Over and above the user can receive more
information like error messages etc.

III.THE ADVANTAGES AND DISADVANTAGES OF
USING THE COM TECHNOLOGY

3.1 The main advantages of the COM technology are:

A. The need to build and update entire application every time

is eliminated. Rebuilding a single component is enough.

B. It promotes component based software development

which has several advantages like ability to use pre-
packaged components and tools from third party vendors
into an application and support for code reusability in
other parts of the same application.

C. COM makes it possible for different language

components, which adhere to COM specifications to
interact with each other.

D. It helps to access components loaded in different

machines on the network.

E. It can segregate applications via binary firewalls or

interfaces that can reduce or eliminate dependencies
between primary elements.

IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 72 www.ijsart.com

F. It provides many features to developers in industry like
language independency, binary standard, wide software
industry support etc.

G. Object Oriented Features

All the COM objects are Object Oriented as its name

implies. There are three basic Object Oriented concepts:
a. Encapsulation: This is implemented by the

interfaces provided by the COM Objects. The
interface hides the implementation details from the
end user and provides the functionality to the user.

b. Polymorphism: This is often referred as “One
Method Multiple Interfaces”. A COM object can
define a single method to perform a specific
operation; but that operation could be implemented
through various ways.

c. Inheritance: When the user wants to incorporate

some additional functionality to an existing COM
object, he can enhance the existing COM object by
inheriting a new COM object from it.

H. Loose Coupling

In software, which uses COM objects, one can easily replace

an existing COM object with another COM object written
in entirely another language as long as the signatures of
the methods in both the COM objects remain same. In
such a case, there will not be any change in the existing
software code that uses the COM object.

I. Binary Language
Since most of the COM libraries are in binary language, it

could be used by any application written in any language.
So COM is language independent.

J. Resource utilization
Every COM object will be destroyed automatically as long as

no client is using that object actively. This is implemented
by COM using a technique called reference counting.
Every COM object will maintain a reference count (the
number of clients using that COM object); Once that
count reaches zero (that means no clients are actively
using that COM object), then that COM object will be
destroyed automatically. With this approach, we can
increase resource utilization in a single application.
Resources such as memory will be best utilized by
releasing the inactive/unused COM objects.

3.2 Specific Drawbacks Of Com Objects

A. Difficult COM Component Development

COM components are often difficult for developers
to implement. An extensive amount of code must be provided
to implement a valid COM object. Furthermore, the software
debugging tools for COM objects are less developed than their
non-component counterparts. Since COM objects can be
active on multiple computers, it is often difficult to determine
the source of malfunction(s), if any.

B. Divergence in Standards

The COM architecture only specifies how software
components communicate – not the specific interfaces they
should use. Microsoft has already defined many interfaces that
provide standard features such as drag-and-drop, data transfer,
and persistent storage. These are not the only valid interfaces;
any developer can define and implement their own custom
built interface. Although this in one of the greatest strengths of
COM, it is also one of its greatest weaknesses. With
unchecked interface proliferation, developers will create their
own closed set of interface standards that will be incompatible
with the work of other developers. This problem has been
partially averted through Microsoft’s use of a standard
scripting interface referred to as "IDispatch." The coordinated
development of interface standards would be necessary for the
ongoing success of COM.

C. The other major drawbacks include difficulty in integrating
internet technologies and expensive, difficult, and
undependable deployment.

IV. ADVANCED COM TECHNOLOGIES

4.1 Microsoft Transaction Server

Microsoft Transaction Server (MTS) is a component-
based transaction processing system for building, deploying,
and administering robust Internet and Intranet server
applications. In addition, MTS allows one to deploy and
administer your MTS server applications with a rich graphical
tool (MTS Explorer). MTS provides the following features:
1. The MTS run-time environment.
2. The MTS Explorer, a graphical user interface for

deploying and managing application components.
3. Application programming interfaces and resource

dispensers for making applications scalable and robust.
Resource dispensers are services that manage non-durable
shared state on behalf of the application components
within a process.

IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 73 www.ijsart.com

The three-tier programming model provides an

opportunity for developers and administrators to move beyond
the constraints of two-tier client/server applications. It also
emphasizes a logical architecture for applications, rather than
a physical one. Any service can invoke another service and
can reside anywhere.

4.2 COM+

It is the enhancement of the Microsoft Component
Object Model (COM) that enables programmers to develop
COM objects with more ease.

For example, COM+ allows native C++ calls to be
translated into equivalent COM calls. In addition, instead of
defining COM interfaces in the traditional IDL language, they
can be defined by more familiar programming syntax.

Where the Component Object Model (COM) ends,
COM+ starts. COM+ extends COM to let you create
components that scale better for:

 Security in Distributed environments: COM+ makes
it easier to build components that can utilize the
security subtleties of Distributed COM (DCOM) .

 Component Services: For event notifications,
synchronization, and de-coupling of event sender and
receiver (queued components, etc.).

 Performance in Distributed environments: COM+
makes it easier to build components that can stand the
stress of high-volume instantiation requests over short
periods of time.

 Deployment in Distributed environments: COM+
makes it easier to distribute server components or
client-side components (typelibs and proxy-stub DLLs)
without having to copy, unpack, register and configure
each of them.

V.CONCLUSIONS

The project has been executed and tested
successfully. The incorporation of any modifications in the
project is very easy as only minor changes in the main handler
code would be needed. The automation makes certain
redundant tasks much easier and quicker to handle. Such
applications are extremely useful for certain users such as data
analysts who have to regularly analyze and summarize data.
The application can be easily modified to read data from a

database, extract it to a spreadsheet and generate suitable chart
based on the data, or to prepare a text report based on it.

Thus, it may be concluded that the COM technology
is truly versatile and extremely advantageous. Nowadays, this
technology is gaining popularity as most of the languages
support development of COM objects. The activities of an
operating system and applications would be strongly COM
oriented in the coming future. This would surely make them
more amicable to the users, even to a novice.

ACKNOWLEGMENT

Authors are thankful to Director DMSRDE, Kanpur
who has provided all the support needed to satisfactory
perform the task.

REFERENCES:

The following books and web resources have proved
to be extremely useful in preparing the project and the paper.

BOOKS

[1] Visual C++ 6 unleashed-Mickey Williams and David

Bennett

[2] COM/DCOM Unleashed – Daniel Wygant

[3] Inside COM(Programming Series) – Dale Rogerson

[4] Professional COM Applications with ATL – Sing Li and
Panos Economopoulos

[5] Inside Distributed COM(Mps) – Guy Eddon, Henry
Eddon

[6] Essential COM(The Addison-Wesley Object Technology
Series) by Don Box

ONLINE RESOURCES

[1] MSDN LIBRARY VISUAL STUDIO 6.0

[2] http://www.microsoft.com/technet

[3] http://computing-dictionary.thefreedictionary.com

(Definitions and Figures)
[4] http://www.howtodothings.com/computers/a1239-

attributesadvantages-of-com.html

[5] http://www.peterindia.net/COMOverview.html

IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 74 www.ijsart.com

[6] http://www.richardhaleshawgroup.com

[7] http://media.wiley.com/product_data/excerpt/23/0764559

9/0764559923.pdf

[8] http://www.emory.edu/BUSINESS/et/com/

[9] http://en.wikipedia.org/wiki/Object_linking_and_embeddi
ng (OLE references)

