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Abstract- Internet of Things (IoT) consists of several tiny 
devices connected together to form a collaborative computing 
environment. IoT imposes peculiar constraints in terms of 
connectivity, computational power and energy budget, which 
makes it significantly different from those contemplated by the 
canonical doctrine of security in distributed systems. In order 
to circumvent the problem of security in IoT domain, networks 
and devices need to be secured. In this paper, we consider the 
embedded device security only, assuming that network 
security is properly in place. It can be noticed that the 
existence of tiny computing devices that form ubiquity in IoT 
domain are very much vulnerable to different security attacks. 
In this work, we provide the requirements of embedded 
security, the solutions to resist different attacks and the 
technology for defying temper proofing of the embedded 
devices by the concept of trusted computing. Our paper 
attempts to address the issue of security for data at rest. 
Addressing this issue is equivalent to addressing the security 
issue of the hardware platform. Our work also partially helps 
in addressing securing data in transit. 
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I. INTRODUCTION 
 
 Wireless and mobile communication technologies are 
already widely deployed and their capabilities are ever 
increasing. New technologies, such as WiMAX, ZigBee, 
Wireless Mesh Networks, and 4G Networks emerge giving 
rise to the notion of ubiquitous computing. The vision of Mark 
Weiser in his famous 1991 article “The Computer of the 21st 
Century”, according to which “the most profound technologies 
are those that disappear; they weave themselves into the fabric 
of everyday life until they are indistinguishable from it,” is 
today a reality [1]. Dix et al. define ubiquitous computing as: 
“Any computing activity that permits human interaction away 
from a single workstation” [2]. Since then, there have been 
tremendous advances in mobile and wireless technologies 
toward supporting the envisioned ubiquitous and continuous 
computation and, consequently, ubiquitous applications that 
are intended to exploit the foregoing technologies have 
emerged and are constantly pervading our life [3]. We can 
observe that from cars to smart phones, refrigerators to 
multimedia players - embedded computing increasingly 

pervade our lives. But most of them are unsecured in nature. 
Security for these systems is an open question and could prove 
a more difficult long-term problem than security does today 
for desktop and enterprise computing. Security issues are 
nothing new for embedded systems. However, as more 
embedded systems are connected to the Internet, the potential 
damages from such vulnerabilities scale up dramatically. 
Internet connections expose applications to intrusions and 
malicious attacks. Unfortunately, security techniques 
developed for enterprise and desktop computing might not 
satisfy embedded application requirements. Internet 
connections expose applications to intrusions and malicious 
attacks. Unfortunately, security techniques developed for 
enterprise and desktop computing might not satisfy embedded 
application requirements [4]. System designs for embedded 
devices are complicated, including multiple independent 
processor cores, secondary bus masters such as DMA engines, 
and large numbers of memory and peripheral bus slaves. In 
addition to these functional components there is typically a 
parallel system infrastructure that provides invasive and 
noninvasive debug capabilities, as well as component 
boundary scan and Built-In-Self-Test (BIST) facilities. Due to 
this kind of importance as well as the pervasive deployment of 
embedded devices from home to big enterprises, embedded 
device security becomes a big issue. Many research initiatives 
have been undertaken to counter the issues of security in 
embedded systems. In fact, security has been the subject of 
intensive research in the context of general-purpose computing 
and communications systems. However, security is often 
misconstrued by embedded system designers as the addition of 
features, such as specific cryptographic algorithms and 
security protocols, to the system. In reality, it is a new 
dimension that designers should consider throughout the 
design process, along with other metrics such as cost, 
performance, and power. The challenges unique to embedded 
systems require new approaches to security covering all 
aspects of embedded system design from architecture to 
implementation. The diverse security requirements are 
especially apparent in embedded systems where increased 
connectivity, portability, and pervasive design objectives are 
need to be considered. In fact, pervasive networks have led to 
widespread use of embedded systems, like cell phones, PDAs, 
RFIDs etc., in increasingly diverse applications. Many of these 
embedded system applications handle sensitive data (e.g., 
credit card information on a mobile phone/PDA) or perform 
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critical functions (e.g., medical devices or automotive 
electronics), and the use of security protocols is imperative to 
maintain confidentiality, integrity and authentication of these 
applications. Evolution of embedded systems towards devices 
connected via Internet, wireless communication or other 
interfaces as well as the trend towards always growing 
numbers of devices (IoT) requires a re-consideration of 
embedded systems engineering processes. It is no longer 
possible to achieve the required level of security by adding 
security measures late in the development process. Security 
engineering as stated above needs to be part of the system 
development in all stages of the process. Typically embedded 
systems have low computing power and finite energy supply 
based on a battery, and these factors are at odds with the 
computationally intensive nature of the cryptographic 
algorithms underlying many security protocols. In addition, 
secure embedded systems are vulnerable to attacks, like 
physical tampering, malware and side-channel attacks. Thus, 
design of secure embedded systems is guided by the following 
factors: small form factor, good performance, low energy 
consumption (and, thus, longer battery life), and robustness to 
attacks. The paper is organized as follows. In section II, we 
have discussed the requirements of embedded security in IoT. 
Then, in section III, embedded security solutions to counter 
some of the security challenges are mentioned. In section IV, 
we described trusted computing and its importance in IoT 
security. Lastly, we conclude in section V. 
 

II. EMBEDDED SECURITY REQUIREMENT IN IOT 
 

With the advent of powerful computing and 
communication gadgets and tools, the possibility of invasion 
on our daily life is increased many folds. Now, with the advent 
of IoT (Fig. 1), we are encountering a third wave of hacking—
one that encompasses not only wired computers and networks, 
but intelligent devices: wireless phones, routers and switches, 
printers, SCADA (Supervisory Control And Data Acquisition) 
systems, and even medical devices. This new hacking wave is 
poised to bypass the amateur “street-creed” phase and move 
directly to well-honed, massively coordinated, sophisticated 
attacks. It is now becoming clear that hacking’s third wave 
will almost certainly include terrorist cyber-strikes against the 
utility and industrial infrastructure (the “smart grid”)—a 
danger we can no longer dismiss as a spy movie scenario. One 
of the most common attacks on IoT is “war drives,” in which 
hackers drive around a neighborhood, hunting for unsecured 
wireless nodes. In the latest twist on war driving, a security 
expert cruised around Fisherman’s Wharf, armed with a cheap 
RFID scanner and a low-profile antenna, and managed to 
clone half a dozen electronic, wallet-sized passports in an 
hour. Ross Anderson has several chapters devoted to the basic 
vulnerabilities of devices and systems used for banking, 

energy metering, and wireless mobile communication, 
signaling the increasing importance of this area. 
 

 
Figure 1. IoT architecture 

 
Another challenging area which embedded security 

needs good amount of attention is: in-vehicular security. Ever 
since electronic devices were installed into cars, they have 
been a feasible target for malicious attacks or manipulations. 
Mileage counter manipulation, unauthorized chip tuning or 
tachometer spoofing [5] is already common. Many analyses 
[7] can verify the safety and reliability of vehicle networks 
against random failures. Analyses that consider also intended 
malicious manipulations, i.e. discuss vehicular communication 
security, are still very rare [8]. Thus, most existing automotive 
communication systems are virtually unsecured against 
malicious encroachments [9]. We can observe that from cars 
to smart phones, refrigerators to multimedia players – 
embedded computing increasingly pervade our lives. But most 
of them are unsecured in nature. Security for these systems is 
an open question and could prove a more difficult long-term 
problem than security does today for desktop and enterprise 
computing. Security issues are nothing new for embedded 
systems. However, as more embedded systems are connected 
to the Internet, the potential damages from such vulnerabilities 
scale up dramatically. Internet connections expose 
applications to intrusions and malicious attacks. 
Unfortunately, security techniques developed for enterprise 
and desktop computing might not satisfy embedded 
application requirements. Internet connections expose 
applications to intrusions and malicious attacks. 
Unfortunately, security techniques developed for enterprise 
and desktop computing might not satisfy embedded 
application requirements [4]. With the advent of IoT and 
pervasive nature of embedded computing, attacks on network, 
data, hardware and software are in rise . Many embedded 
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systems are especially susceptible to a type of noninvasive 
attacks called side-channel attacks. Non-invasive techniques 
consist of software attacks (using viruses, worms, etc) and 
attacks based on the statistical analysis of operational 
characteristics of the device to extract secret information. 
When a system is under attack, different goals are targeted; the 
first kind of attack is the extraction of secret information, the 
second one is trying to put the system out of order . Coron et 
al. [29] formulated a set of statistical tests which can be used 
to detect the presence of side-channel leakage from any given 
cryptographic computation. 
 

III. EMBEDDED SECURITY SOLUTION 
 

There are many existing solutions to counter different 
attacks. Encryption of information is used for confidentiality. 
The most popular cipher algorithms are: RSA, ECC, AES, 
3DES.The hash of information is used to check the integrity of 
a message by providing a signature which is unique for each 
message. The most known algorithms are MD5 and SHA. In 
addition, non-repudiation, availability and authenticity are 
guaranteed by communication protocols like IPSec for 
example. Most of these algorithms and processes are very 
much computationally intensive. So, we require dedicated 
hardware or Digital Signal Processors (DSP). A dedicated 
processor implements specific instruction dedicated to security 
primitives. An analogy can be done with DSP through its 
multiplication-accumulation instruction for digital signal 
processing. In most cases, security processors are dedicated to 
one class of ciphering algorithm (symmetric or asymmetric). 
Specific execution units are added into the datapath. Authors 
propose processors with Instructions for symmetric ciphering 
algorithms. Specific instructions have been defined like 
logical operation (xor-add) or data permutation. In 
CryptoManiac processor, a fast and flexible co-processor for 
cryptographic workloads is developed. Authors have presented 
an analysis of a 0.25um physical design that runs the standard 
Rijndael cipher algorithm (3DES) 2.25 times faster than a 
600MHz Alpha 21264 processor. For processors dedicated to 
asymmetric ciphering algorithms, specific instructions are 
defined. For instance to efficiently compute the modular 
exponentiation is used in ECC and RSA. However, there still 
exists significant difference between requirements of security 
processing and the capability of an embedded processor. This 
difference is termed security processing gap. System designs 
for embedded devices are complicated, including multiple 
independent processor cores, secondary bus masters such as 
DMA engines, and large numbers of memory and peripheral 
bus slaves. In addition to these functional components there is 
typically a parallel system infrastructure that provides invasive 
and non-invasive debug capabilities, as well as component 
boundary scan and Built-In-Self-Test (BIST) facilities [8]. 

Due to this kind of importance, complexity as well as the 
pervasive deployment of embedded devices from home to big 
enterprises, embedded device security becomes a big issue. 
Many research initiatives have been undertaken to counter the 
issues of security in embedded systems. We find great 
treatment on the issues of embedded system security in [10], 
where authors have described security requirements, design 
challenges, basic concepts, different security protocols like 
Secure Socket Layer (SSL) [11], open SSL [12], architectures. 
The SSL protocol is typically layered on top of the transport 
layer of the network protocol stack, and is either embedded in 
the protocol suite or is integrated with applications such as 
web browsers. This is shown in Fig. 2. 

 

 
Figure 2. SSL protocol, with an expanded view of the SSL 

record protocol 
 

IV. TRUSTED COMPUTING 
 

In order to provide security at the physical or 
execution level, we need to build our solution based on secure 
execution environment (SEE). An SEE is a processing unit 
which is capable of executing applications in a protected 
manner, meaning the attacks originating from outside the SEE 
cannot tamper with code and data belonging to the SEE. The 
first building block of an SEE is of course a secure processor – 
either a dedicated processor or one capable of supporting a 
secure mode, which is hardware compartmentalized from the 
non-secure mode. Utilizing a dedicated processor has the 
advantage of ease of separation as well as offloading the main 
processor from handling security tasks. The disadvantage of a 
dedicated processor is the increase in silicon footprint. The 
advantages of using one processor with two compartments is 
exploiting remaining Millions Instructions Per Second (MIPS) 
if available, while the disadvantages include the need for 
better system design, and harder proof of security robustness. 
The second building block is secure code and data memory – 
most likely dedicated on-chip RAMs. It is important to 
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remember that whenever code is present outside the SEE 
memory it should be integrity protected against modifications 
(and possibly protected for confidentiality by means of 
encryption if required). Whenever data is present outside the 
SEE memory it should be protected both for confidentiality 
and for integrity . In this respect, we find that recently good 
amount of development has taken place in embedded platform 
security. Among the commercial releases, Trusted Platform 
Module by Atmel [13] and Trustzone by ARM [14] are worth 
mentioning. Trusted platform module (TPM) is to provide the 
minimal hardware needs to build a trusted platform in 
software. While usually implemented as a secure coprocessor, 
the functionality of a TPM is limited enough to allow for a 
relatively cheap implementation – at the price that the TPM 
itself does not solve any security problem, but rather offers a 
foundation to build upon. Thus, such a module can be added to 
an existing architecture rather cheaply, providing the lowest 
layer for larger security architecture. The main driver behind 
this approach is the Trusted Computing Group (TCG), a large 
consortium of the main players in the IT industry, and the 
successor to the Trusted Computing Platform Alliance 
(TCPA) [15]. TrustZone consists of a hardware-enforced 
security environment providing code isolation, together with 
secure software that provides both the fundamental security 
services and interfaces to other elements in the trusted chain, 
including smartcards, operating systems and general 
applications. TrustZone separates two parallel execution 
worlds: the nonsecure ‘normal’ execution environment, and a 
trusted, certifiable secure world. TrustZone offers a number of 
key technical and commercial benefits to developers and end-
users. TrustZone software components are a result of a 
successful collaboration with software security experts, 
Trusted Logic, and provide a secure execution environment 
and basic security services such as cryptography, safe storage 
and integrity checking to help ensure device and platform 
security. By enabling security at the device level, TrustZone 
provides a platform for addressing security issues at the 
application and user levels. Below (Fig. 3 & 4) we show the 
hardware and software architecture of ARM Trustzone. It is to 
be noted that one of the main features of trusted computing is 
secure boot. Secure Boot (also known as High Assurance 
Boot) is a technique for verifying and asserting the integrity of 
an executable image prior to passing the control to it. 
Assuming the verification mechanism is based on the digital 
signature of the image being verified, the reliability of this 
verification is at best as good as the reliability of the 
protection mechanism provided in the device for the public 
key of the image signer. The most important assumption here 
is that the code that performs the integrity verification process 
is itself trustworthy.  
 

To assert this assumption, the implementations 
typically put the public key material (as well as the 
verification code) into non-writable areas of memory, which in 
turn are protected using some sort of hardware protection 
mechanism. Generic Secure boot architecture is shown in Fig. 
5 [17]. In this approach, the first step after boot-up is to verify 
the integrity of the Secure Boot code itself using digital 
signature verification. Next, the Secure Boot code performs 
integrity checking of basic security parameters (such as the 
signers' public key), and then after that validation of system 
images (such as the entire kernel or individual system 
libraries) occurs, and finally the user-space application 
validation takes place. The integrity of each layer relies on the 
integrity of the layers underneath. At any point, if the 
verification fails, the system can be put in a halt-state. In ARM 
Trustzone, the secure boot scheme adds cryptographic checks 
to each stage of the Secure world boot process. This process 
aims to assert the integrity of all of the Secure world software 
images that are executed, preventing any unauthorized or 
maliciously modified software from running. The secure boot 
process implements a chain of trust. 

 
Starting with an implicitly trusted component, every 

other component can be authenticated before being executed. 
The ownership of the chain can change at each stage - a PuK 
(Personal Unblocking Key) belonging to the device OEM 
might be used to authenticate the first bootloader, but the 
Secure world OS binary might include a secondary PuK that is 
used to authenticate the applications that it loads. Unless a 
design can discount hardware shack attacks the foundations of 
the secure boot process, known as the root of trust, must be 
located in the on-SoC ROM. The SoC ROM is the only 
component in the system that cannot be trivially modified or 
replaced by simple reprogramming attacks. Storage of the PuK 
for the root of trust can be problematic; embedding it in the 
on- SoC ROM implies that all devices use the same PuK. This 
makes them vulnerable to class-break attacks if the PuK is 
stolen or successfully reverse-engineered. On-SoC One-Time- 
Programmable (OTP) hardware, such as poly-silicon fuses, 
can be used to store unique values in each SoC during device 
manufacture. This enables a number of different PuK values to 
be stored in a single class of devices, reducing risk of class 
break attacks. Another secure boot implementation is found 
for Linux platform, which is part of SELinux [18]. To provide 
the appropriate levels of protection, these environments are 
enhanced with mandatory access control (MAC) mechanisms. 
One method to achieve a MAC is by implementing Role-
Based Access Control (RBAC). NSA's SELinux, among other 
features such as MLS (Multi Level Security), provides Linux 
with MAC through RBAC [18]. With the explosive growth of 
mobile devices and application, it is true that the next 
generation of open operating systems won’t be on desktops or 
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mainframes but on the small mobile devices, which enables 
greater integration with existing online services. Developed by 
the Open Handset Alliance (led by Google), Android is a 
widely anticipated open source operating system for mobile 
devices that provides a base operating system, an application 
middleware layer, a Java Software Development Kit (SDK), 
and a collection of system applications. Android restricts 
application interaction to its special APIs by running each 
application as its own user identity. This controlled interaction  
as several beneficial security features. Android protects 
applications and data through a combination of two 
enforcement mechanisms, one at the system level and the 
other at the inter-component communication (ICC) level. ICC 
mediation defines the core security framework. It is built on 
the guarantees provided by the underlying Linux system. As 
the central point of security enforcement, the Android 
middleware mediates all ICC processes by reasoning about 
labels assigned to applications and components. A reference 
monitor provides MAC enforcement of how applications 
access components. Security enforcement in Android occurs 
in two places: each application executes as its own user 
identity, allowing the underlying Linux system to provide 
system-level isolation; and the Android middleware contains a 
reference monitor that mediates the establishment of ICC. 
Both mechanisms are vital to the phone’s security, but the first 
is straightforward to implement, whereas the second requires 
careful consideration of both mechanism and policy. In, 
authors have presented SCANDROID, (Security Certifier for 
anDroid) a tool for automated security certification of Android 
applications. 
 

SCANDROID statically analyzes data flows through 
Android applications, and can make security-relevant 
decisions automatically, based on such flows. In particular, it 
can decide whether it is safe for an application to run with 
certain permissions, based on the permissions enforced by 
other applications. Alternatively, it can provide enough 
context to the user to make informed security-relevant 
decisions. 

 
Figure 3. Trustzone hardware architecture 

 
Figure 4. Trustzone software architecture 

 

 
Figure 5. Generic secure boot architecture 

 

 
Figure 6. Android security architecture 

 
V. CONCLUSION AND FUTURE WORK 

 
With the advent of pervasive nature of today’s 

computing, security is becoming very critical for wide range 
of applications. As most of today’s and next generation 
computing applications involve embedded systems, in this 
work, we have presented the requirements, issues, designs and 
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solutions of embedded design to counter the different attacks. 
While some aspects of security have been addressed in the 
context of traditional general-purpose computing systems, 
embedded systems usher in many new challenges. We have 
highlighted the security-related problems faced by designers 
of embedded systems, and outlined recent developments and 
innovations to address them. Several issues, however, still 
remain open to find a holistic solution to the problem of 
embedded system security. Efficient security processing alone 
is of limited use if an embedded system does not successfully 
address attacks that could potentially compromise its security. 
A clear cost and risk analysis becomes essential to determine 
the levels of attack resistance that a device must support. Since 
attacks continue to increase in sophistication, the development 
of countermeasures remains a challenging and on-going 
exercise. It is also important to remember that 
countermeasures applicable to one system (e.g., smartcards) 
may not be able to applicable to other embedded systems (e.g., 
PDAs or smart phones). Thus, system-specific attack-
resistance measures are crucial. IoT mainly consists of tiny 
devices with limited processing power. As the attackers 
become sophisticated, it becomes necessary to dedicate entire 
co-processor with high scalability to offer entire security 
features that an embedded system may require. It is very 
crucial to reduce susceptibility to sidechannel attacks through 
the use of hardware techniques that reduce correlation 
between data values and side-channel information, like power, 
time, etc.  
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