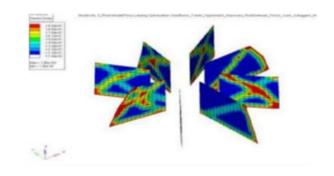
Optimisation Of Engine Mounting Bracket Under Static Loading Conditions By Using Ansys

Mrs.SAGARAPU GANGA BHAVANI¹, Mr. N.JAYARAM.², Dr.C.V.SUBBA REDDY.³

^{1,2} Dept of Mechanical department ²Assistant professor, Dept of Mechanical department ³Professor, Dept of Mechanical department ^{1,2,3} Kakinada institute of technology and science, Divili

Abstract- It is very important to reduce the development times from the initial concept development stage to the mass production stage in automotive engineering. Much trial and error occur from the initial design to mass production to verify the performance and durability and other design criteria. Computational simulations for reducing such trials and errors are generally utilized and have proven to be useful tools in many areas. The ability of using CAD/CAE has become one of the core technologies nowadays because of shortened development periods. The compressor mounting bracket was studied in this paper.

This study is mainly concentrated on the optimization of Material of the model automobile engine mounting bracket, optimization will help in reducing the unwanted material investment, simplifying the design and reduce the production time, in this work 4 different materials are used for optimization, all the observations are discussed below, the optimized models have irregular shapes, and are not ready for manufacturing, these models are to be redesigned excluding the portions that are removed during optimization.


I. INTRODUCTION

Structural optimizations are concerned with enhancing the utility of a fixed quantity of resources to fulfill the given objective. Three categories of structural optimization exist; topology, size and shape.

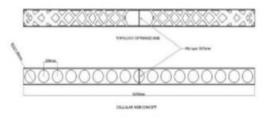
Structural topology optimization is the most general of the three categories yielding information on the number, location, size and shape of "openings" within a continuum. The first solutions to a topology optimization problem were presented by Michell. Modern topology optimization techniques can be applied to generalized problems through the use of the Finite Element (FE) method, as a relatively recent innovation. Aerospace, automotive and mechanical engineers have successfully utilized topology optimization in order to achieve weight savings in structures.

This paper briefly details the two most popular topology optimization techniques currently available; presents

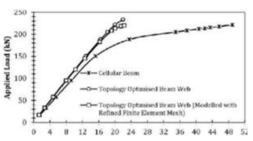
the theoretical background and practical implementation of the most commonly used Solid Isotropic Material with Penalization (SIMP) technique; and reveals previous applications of topology optimization in both structural engineering and architecture. Moreover, the implementation of topology optimization within the field of structural engineering, and potential opportunities beyond the present frontiers, are examined through various examples. A description of studies conducted by the authors using the topology optimization technique for: (a) the design of a high-rise structure, and(ii) the development of a novel steel I-section with atypical web openings configurations, is also presented.

The term "topology" is derived from the Greek word "tops" meaning position/place. The application of topology optimization extends to the number of holes, their location, their shape and the connectivity of the structural domain. Shape and sizing optimization are more limited than topology optimization in the respect that the designer must specify the topology of the proposed structure which is then fixed throughout the optimization process.

Page | 99 www.ijsart.com


Rational truss structures suggested for the outriggers in the results of the topology optimization study

The judicious placement of holes in the webs of steel beams has been employed to design lighter and stiffer beams for over 100 years. The original concept of creating a beam with web openings can be attributed to Geoffrey Murray Boyd [30], who patented what is now known as the castellated beam.


Castellated beams are formed by the expansion of a parent I-section to form a deeper stiffer section with web openings (fig.6a). Cellular beams, which contain circular openings, are currently the most widely used perforated beams due to their beneficial weight-to- stiffness ratio, and the ability to pass services (e.g. hydraulic pipes, electric wires, etc.) through large holes, while the stresses are distributed evenly in the vicinity of the circular holes. An alternative to the castellation process of fabrication is the plate assembly

The examination was led on a standard 305x165x40 General Shaft (UB). The area was chosen on the premise that it has been broadly utilized in before both trial and numerical examinations and speaks to an average 5m range segment in building development. The bar was exposed to consistently conveyed stacking along the top pressure steel rib to mimic the heap from a steel-solid composite (SCC) or fortified solid deck with the incomplete shear quality (for example parallel strength was not given).

The evenness compelled study brought about a comparable structure with rhomboid openings. However, it was better parity along the length of the pillar design with rhomboidal openings; unit was better balanced along the length of the beam.

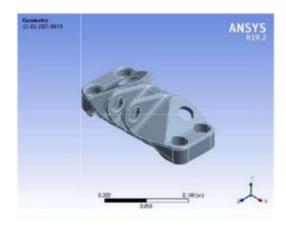
The results of the topology optimization study were post-processed in order to generate the finalized geometry of the optimized beam web (fig.8a). In order to further investigate the structural performance of the beam web in comparison to a typical beam with circular web openings, a nonlinear FE analysis was employed. The size of the circular web openings was determined based on the maximum size generally used widely in industry, equal to 0.75 times the depth of the web. A total of 17 web openings were placed along the length of the beam, in order to make the weight of the cellular beam as similar as possible to the optimized one, whilst retaining the same flange dimensions. It was desirable to compare a cellular beam of a similar mass in order to be able to draw valuable conclusions regarding the structural efficiency of the topology optimized design.

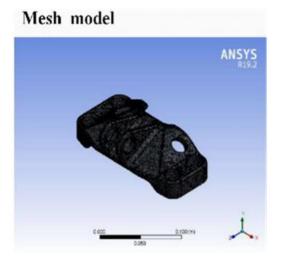
Vertical Displacement at Mid-span (mm)

Novel web opening architecture: In light of the results detailed above and Kingman et al., it is concluded that the topology optimization is a useful tool identifying alternative improved beam configurations and improving the in depth understanding of their structural behavior.

200 mm Deep	240mm Deep	270mm Deep
	\propto	
300mm Deep	400mm Deep	560mm Deep
700mm Deep		900mm Deep

Page | 100 www.ijsart.com

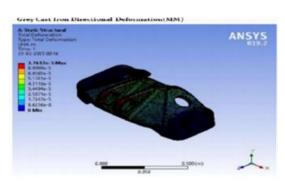

A local approach was implemented in order to identify a more generalized opening type. Based on the results of this study a novel opening architecture has been suggested (fig.11). It is anticipated that this new configuration is possible to be fabricated using the plate assembly technique, while no cost implies, compared to any other opening shapes. Further study is, however, required to examine various failure mechanisms that might have been introduced due to the complexity of these web openings as well as derive an analytical and/or empirical method to determine the load carrying capacities.

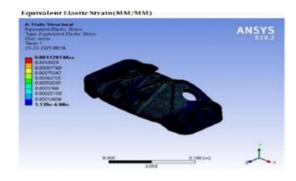

Topology Optimization: For the past three decades tremendous improvement is noticed in the application of topology optimization in generating efficient design concepts. Current structural optimization software applications have built-in topology optimization modules in addition to shape optimization capabilities. Altair Opti-Struct is one such efficient tool appeared in the last decade.

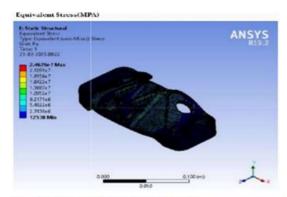

However, special optimization modules equipped with fewer analysis capabilities than general FEM codes offer higher efficiency for optimization. The reasons for this are highly specialized codes are typically smaller and therefore more flexible for incorporating the latest developments than general codes, and for specialized codes, highest priority is devoted to its core technology of optimization. Now-a- days topology optimization has been performed separately while thickness and shape optimization can be combined into a single process.

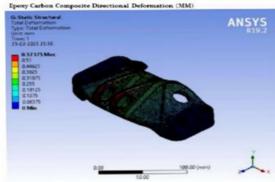
MODELING: There are various types of drawings required in the different fields of engineering and science. In earlier days, various drawing instruments like drafting machine, T-square, scale etc., are used to prepare drawings easily and accurately. But to obtain better ease in modifying the design and making calculations, the process of preparing a drawing is made in the computer using certain software's. This use of computer systems is termed as computer aided design. It replaces manual drawing with an automated process.

Topology optimization

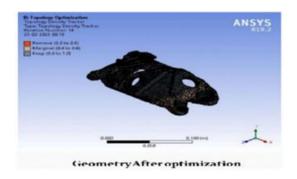

MATERIAL PROPERTIES


Page | 101 www.ijsart.com


	les of Outine Raid St Gray Chat Bon			- 3		
	A		c		0	
1.	Property	Velore	Unit		62	郭
2	Material Field Variables	Table .				
3	☐ Censity	7200	kgm^-3	-	100	2
4	B Sa Separation Coefficient of Thermal					Г
8	Coefficient of Thermal Expansion	1.16-05	60-1			
5	H Distruct Electrony				100	Г
,	Derive from	Young's Mo				
3	Toung's Modulus	1.1E+11	Pa	*		
3	Possor's Rate	0.28				
0	B.R. Modulus	8-3333E+10	Fa			
11.	Shear Modulus	4.2969E+10	Pa			Ħ
12	Tensile Yeld Strength	0	Pa	*		
13	Congressive Yeld Strength	6	Pa	*	60	西
4	Tensile Utimale Strength	2.46.400	Pa	*	E	
3	24 Compressive Ultimate Strength	5.2E+08	Pa	*	25	18

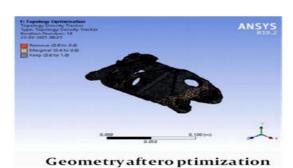

MARKS TO	tica of Current flam for Ethnickaral Ethnic			-		400
		1.00			0	*
	PROPERTY	tele	Lose		13	5653
2	C/2 Heteral Face Variables	Table			_	-
3	S.d. Occube	7653	No ren 3	- 14	25	105
	III Sh Detroise Galant Coefficient of Thermal				D	Г
	[7] Coefficient of Thomas Expansion	1.26 08	Cn s	-1		
-	10 Vill Surrows Machiny			-17	20	_
7	Centre from	TUNES/S PRA Y				
*	Torry's Molda	At+11	Fin	21		
	Patients for Burling	0.3				
10	Dulk Modulus	1.006070-1.1	Fin			100
	Dreer Holivia	7,49000 + 10	Yes			
1.2	in [d] stren ofe reveneters				16.	
15	Deplay Gurye Type	About title (8)				
14	Strongth CooMount	9.36+08	ria :	-		
LD	Strength Expenent	9.89				
16	The Hity Coefficient	0.013				
1.0	Ductifity Exponent	4.47				門
140	Cydic Strangth Coefficient	E+09	Fig. :	*		問
(9)	Cycle Strain Handoning Expersed	0.2				
56	SE THE SHICKING	Tabular				
2.8	Britmadator	Ling Log (w)				
22	Stele					
2:4	Offset		Fe .			
24	SS Tensie Held Strength	3.16.400	i'm	-1	10]m
13	Congestation Virial Strongth	2.00+68	Fin	=1	100	lim
36	Tifs Terrale Utimate Strength	5.6E+08	ria .	27.		
19	Titl Compressive Useale Strength		Fig.	-1		

gen'	es of Outre has 3: Allower Alloy				• 4	AD)
			c		0	•
L	Property .	Yeles	Gret		100	93
2	25 Hateral Pickt soriables	Table				
3	2 Density	2779	Aprend .	*	20	z
4	IR Sh Separation Coefficient of Thermal				23	
	28 Coefficient of Thermal Expension	3.30-65	C^4	*		70
6	(I) 23 Swingschischoly				E1	П
2	Derive Sore	Yeung's Ma W				
8	Toungs Hoshikus	7,15+30	Pa	*		
	Pulsant's Ratio	0.32				
13	B.A. Modulus	6.9606E+20	Pe			
u:	Shear Modulus	2.00935+10	Fa			
12	IN SE SHOWN	Tabular			10	
13	Interpolation	Sewice *				
14	Scale	1				
13	Offset	0	Ps.			70
15	Tanale Yels Strangth	2.86+08	Pa	*	103	
12	23 Corpressive Yell Strength	2.85+08	Pa	*	10	
1.0	Tensia Ultimate Strength	3.10+08	Pa	*	[2]	
19	Congressive Uffinals Strength		Po	*		10

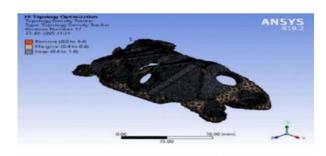


ChipoutName	Topology Density
Storter	Firefrend
Seepe	
Secoping Method	OptimizationRegion
OptimizationRegion	Chatternium them the mison
Definition	
Туркс	Topology Density
Dy	Heration
Iterrasiem	Lost
HetninedThreshold	0.5
I we transcommunity mentical granticers	You
CalculateTimeHistory	Yes
Suggeronnect	Price
Hemilte	
Mintenum	1-m-OO3-
Maximum	1.
Asternage	0.50953
Original Volume	1.8488e+005mm*
Firmt Volume	Set I Herman
Percent Valume of Original	50.907
OriginalNiana	1.3312kg
FirmINdams	0.67765kg
PercentMassoft triginal	50.907
Visiteitity	
Show Openinsond Resident	RetainedRegion
Information	
Herntton Number	1-4

Page | 102 www.ijsart.com



Chicothinno	Feature lease v Ebernates
State	Sicilwed
There goe:	
SeopingMethod	Optimization Region
OptimizationRegion	OptimizationRegion
Definition	
Type	Tupology Dennity
Dy	Iteration
Iteration	Last
RetninedThreshold	0.5
FiscalumionsParticipation	Ven
Colember Time History	Yan
Surpero macel	P40
Minnes Min	
Politicistation .	1.w-003
Potancimina	1.
Average	0.50863
OriginalVolume	1.8488c+005mm*
FinalVolume	94108mm*
Percent Volumen fOriginal	50.901
OriginalMass	1.4513km
Finallytana	0.73875kg
PercentManner(Original	50.901
Visibility	
Show Optimized Region	RetainedRegion
Information	
tterationNumber	1.4



Geometry aftero ptimization

Chapeast Printers	Tespestersev Derratev
Sitate	Solved
Newsgan	
ScopingMethod	OptimizationRegion
OptimizationHegion	OptimizationRegion
Definition	
Type	Topology Density
By	Itemtion
I terrist icere	L.asret.
ReminedThreshold	0.5
Exclusions Participation	Yen
CalculateTimeHistory	You
Suppressed	No
Results	
Minimum	1.e-003
Maximum	1.
Average	0.5085
Christiant Volume	1.8488c+005mm*
FinalVolume	94183mm*
Percent Volume of Original	50.942
OriginalMass	0.51213kg
Pinal Mass	0.26089kg
PercentMassofOriginal	50.942
Visibility	
ShowOptimizedRegion	ReminedRegion
Information	
IterationNumber	14

COLOLOW WATGROOM	Trapaced course of Acres week
POST AND AND	Piers I house of
Past regard	
Charles of the San Section of the Control	Constitution of the second
OptimizationRegion	Edward and the same
# Par #1	
Targero	Donaits
R.B.or	Respense
Engarge Attacks	A. creces
Photos irrest T Presentantel	0.5
Forticipation.	~~~
Culculates Time	~~~
Histopoporoment	Policy.
READMINER	
P-distinguists.	Lancoppin
Pod se recessors	1
Average	0.50028
OriginalVolume	1 . R-18 Rut + OO.5
Firent Variances	9:10:10mm*
Percent Velume of	NO HE-B
OriginalNama	O.27363kg
Frank Polisins	CO. T. TS CO. E. PERSON.
Original Man of	50.004
Vinitalities.	
Heaten	Rotalnocification
Hearten restrict farms	
IturationPoinmer.	1.7

Geometryafter optimization

		200
Experis		

Topology	Directional Deformation(Mm)		EquivalentElastic Strain(Mm/Mm)		EquivalentStress (Map)	
Optimization	Max	Min	Max	Min	Max	Min
GreyCastiron	7.76e-02	0	0.001128	1.14e-06	1.24e+02	7.73e-02
StructuralSteel	4.29e-02	0	0.000618	6.40e-07	1.24e+02	5.91e-02
AluminumAlloy	2.44e-02	0	0.000347	3.69e-07	2.46e+01	1.25e-02
EpoxyCarbon Composite	5.74e-01	0	0.012473	2.45e-06	2.68e+02	3.80e-02

II. CONCLUSIONS

This study is mainly concentrated on the optimization of Material of the model automobile engine mounting bracket, ooptimization will help in reducing the unwanted material investment simplifying the design and reduce the production time, in this work 4 different Materials are used for optimization, all the observations are discussed below, the Optimized models have irregular shapes are not ready for manufacturing, these models are tobe redesign excluding the portions that are removed during optimization.

- 1. Aluminium model has the lowest stress of all models
- 2. As these optimizations are targeted for material optimization the dead mass is optimized.
- 3. 50% present of the original mass is optimized and hence the dead mass is more than 50 percent
- 4. All the models are to be redesigned excluding the volumes removed during optimization.
- 5. By optimizing these models, we can reduce the material cost by 50present and additionally material

Page | 103 www.ijsart.com

- handling cost, machining cost etc. are also reduced significantly
- The only problem will be redesign of both model and dies for casting the component as these components are dying cast

REFERENCES

- [1] HSL (2011). A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk.
- [2] 2.E.H.L. Aarts and J. Korst. Simulated annealing and Boltzmann machines: a stochastic approach to combinatorial optimization and neural computing. Wiley Inter science series in discrete mathematics and optimization. Wiley, 1989.
- [3] 3.W. Achtziger. On simultaneous optimization of truss geometry and topology. Structural and Multidisciplinary Optimization, 33(4):285304, 2007.
- [4] W. Achtziger and M topology optimization. Structural and Multidisciplinary Optimization, 34(3):181195, 2007.
- [5] Wolfgang Achtziger and Mathias Stolpe. Truss topology optimization with discrete design variables - Guaranteed global optimality and benchmark examples. Structural and Multidisciplinary Optimization, 34(1):1 20, December 2007.
- [6] Wolfgang Achtziger and Mathias Stolpe. Global optimization of truss topology with discrete bar areas -Part I: theory of relaxed problems. Computational Optimization and Applications, 40(2):247280, November 2008.
- [7] Wolfgang Achtziger and Mathias Stolpe. Global optimization of truss topology with discrete bar areas Part II: Implementation and numerical results. Computational Optimization and Applications, 44(2):3

Page | 104 www.ijsart.com