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Abstract- Smart concrete is transforming construction by 

combining self-sensing and self-healing characteristics, 

allowing for real-time structural health monitoring. However, 

because of different material compositions and environmental 

conditions, it is difficult to estimate its attributes, such as 

strength, durability, and crack resistance. The use of 

sophisticated computational techniques like machine learning 

(ML) and deep learning (DL), which are subsets of artificial 

intelligence (AI), is growing. These techniques offer potent 

answers by evaluating enormous datasets to precisely predict 

tangible behavior. These models increase prediction accuracy 

and lessen the need for expensive laboratory testing, 

increasing the viability of smart concrete for next-generation 

infrastructure. Convolutional Neural Networks (CNNs) 

improve fracture identification through image analysis, while 

Artificial Neural Networks (ANNs) and Support Vector 

Machines (SVMs) are AI models that are excellent at 

predicting mechanical features. By evaluating data from 

embedded sensors and historical records, AI optimizes mix 

designs and predicts probable faults. Case studies show that 

AI is beneficial, with ANN-based self-healing concrete 

achieving 93% accuracy in repair prediction and CNN-

powered bridge monitoring reducing inspection expenses by 

25%. These achievements demonstrate AI's significance in 

making building more intelligent and sustainable. 

 

Despite its potential, problems exist, such as data 

scarcity, model interpretability, and computing demands. 

Future research focuses on Explainable AI (XAI) for 

increased transparency, hybrid models that combine physics 

and machine learning, and edge AI for real-time decision-

making. As AI evolves, its combination with smart concrete 

will result in safer, more durable infrastructure, opening the 

door for intelligent cities and resilient buildings. AI and smart 

concrete have the potential to reinvent current construction by 

combining innovation and pragmatism for a more sustainable 

future. 

 

Keywords- Artificial Intelligence, Machine Learning, Smart 

Concrete, Artificial Neural Networks, Self-healing Concrete. 

 

I. INTRODUCTION 

 

 Smart concrete represents a watershed moment in 

construction materials by combining self-sensing, self-healing, 

and real-time monitoring capabilities. Smart concrete, unlike 

ordinary concrete, actively detects damage and initiates self-

repair using technologies such as conductive fillers (e.g., 

carbon nanotubes), microencapsulated healing chemicals, and 

embedded sensor networks.Smart concrete is gaining 

popularity in response to rising demand for sustainable, long-

lasting, and low-maintenance infrastructure. Its inbuilt sensors 

provide constant structural health data, allowing for predictive 

maintenance. 

 

Artificial intelligence (AI), specifically machine 

learning models like as Artificial Neural Networks (ANNs), is 

crucial for analyzing sensor data, anticipating concrete 

behavior, and optimizing mix designs. AI models have been 

extremely effective in calculating compressive strength, 

exceeding standard empirical methods, particularly for 

combinations including unusual chemicals. 

 

Advanced techniques, such as hybrid multilayer 

perceptrons and Evolutionary ANNs, enhance prediction 

accuracy and efficiency, allowing for real-time decision-

making and minimizing dependency on destructive testing. 

 

Smart concrete and artificial intelligence are 

transforming current construction by improving safety, 

performance, and sustainability in infrastructure building. 

 

II. REVIEW OF LITERATURE 

 

Chakravarthy et al.(2023)– ML Models For SSC with 

Biomedical Waste Ash1. In this paper, the author discusses the 

use of incinerated biomedical waste ash (IBMWA) in self-

compacting concrete (SCC) as a sustainable alternative 

material. Along with IBMWA, lightweight expanded clay 

aggregate (LECA) and ground granulated blast furnace slag 

(GGBS) were employed to partially replace traditional 

components. To estimate the compressive strength of these 
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mixes, the researchers used three machine learning models: 

Artificial Neural Networks (ANN), Gradient Tree Boosting 

(GTB), and CatBoost Regressor. GTB and CBR outperformed 

ANN in prediction accuracy. The study emphasizes the 

potential of mixing waste resources and machine learning to 

create environmentally friendly, high-performance concrete. 

 

Azizifar & Babajanzadeh (2018) – Predicting SSC 

Strength with Silica Fume2.Azizifar and Babajanzadeh used 

machine learning to forecast the compressive strength of self-

compacting concrete (SCC) that contained silica fume. They 

used Multivariate Adaptive Regression Splines (MARS) and 

Gene Expression Programming (GEP) to model the nonlinear 

interactions between major mix factors. Both methods 

accurately measured the impacts of silica fume and other 

components, demonstrating the importance of data-driven 

approaches in SCC design. 

 

Hoang(2022) – Multi-Algorithm ML Study on SSC 

Strength3.In his 2022 study, Hoang compared several 

advanced machine learning algorithms to predict the 

compressive strength of self-compacting concrete (SCC). 

Addressing the complexity of SCC mixtures with multiple 

supplementary materials, he evaluated Levenberg–Marquardt 

Artificial Neural Networks (ANN), Genetic Expression 

Programming (GEP), Deep Neural Network Regression 

(DNNR), and Support Vector Regression (SVR). Using a 

detailed dataset of mix components, the study assessed each 

model’s ability to accurately capture nonlinear relationships 

and forecast compressive strength, highlighting the strengths 

of modern AI techniques over traditional methods. 

 

Asteris et al.(2021) – Hybrid Ensemble Models for 

Concrete Strength4. In their 2021 study, Asteris et al. 

developed hybrid ensemble models to improve the prediction 

of concrete compressive strength by combining multiple 

machine learning algorithms. Using surrogate modeling 

techniques with Support Vector Machines (SVM) and 

Decision Trees (DT), the hybrid approach enhanced accuracy, 

stability, and generalization compared to individual models. 

Tested on a dataset of various concrete mix components, the 

ensemble effectively captured complex nonlinear behaviors, 

benefiting from the complementary strengths of SVM’s 

handling of high-dimensional data and DT’s ability to model 

threshold effects. 

 

Behnood & Golafshani (2018) – ANN with Grey 

Wolf Optimizer for Silica Fume Concrete5.Behnood and 

Golafshani (2018) used a hybrid model that used an Artificial 

Neural Network (ANN) and a Multi-Objective Grey Wolf 

Optimizer (GWO) to forecast the compressive strength of 

silica fume concrete. Because the complex, nonlinear effects 

of silica fume render typical models ineffective, the GWO was 

utilized to optimise the ANN's weights and biases, enhancing 

accuracy and avoiding local minima. This bio-inspired hybrid 

technique showed great promise for addressing complex 

concrete mix behaviors, providing a dependable and efficient 

tool for forecasting concrete qualities in construction. 

 

Golafshani et al.(2020)– ANFIS and ANN 

Hybridized with Grey Wolf Optimizer6.Golafshani et al. 

(2020) created hybrid models to forecast the compressive 

strength of regular and high-performance concrete by merging 

the Adaptive Neuro-Fuzzy Inference System (ANFIS) and 

Artificial Neural Networks (ANN) with the Grey Wolf 

Optimizer (GWO). ANFIS used fuzzy logic and neural 

networks to deal with uncertainty and nonlinear patterns, 

whereas GWO optimized model parameters for faster learning 

and convergence. When tested on several real datasets, these 

hybrid models outperformed standard approaches, attaining 

excellent accuracy and robust predictions. 
 

Awoyera et al.(2020) –ANN and GEP for 

Geopolymer SSC7.Awoyera et al. (2020) used Artificial 

Neural Networks (ANN) and Gene Expression Programming 

(GEP) to estimate the compressive strength of geopolymer 

self-compacting concrete (SCC), which is made with 

aluminosilicate-rich ingredients such as fly ash instead of 

Portland cement. Using a dataset of mix parameters and curing 

conditions, both models demonstrated high prediction 

accuracy, with ANN marginally outperforming in error 

reduction and generalization. While ANN excelled at 

capturing complicated nonlinearities, GEP supplied 

interpretable equations to help understand material behavior. 

The study proved that both methods are effective for quick, 

non-destructive strength prediction, which will help progress 

sustainable concrete technology. 

 

Farooq et al.(2021) – Comparative Study Using 

SVM,ANN, and GEP8.Farooq et al. (2021) investigated 

Artificial Neural Networks (ANN), Support Vector Machines 

(SVM), and Gene Expression Programming (GEP) for 

estimating the compressive strength of self-compacting 

concrete (SCC) containing fly ash. Using a dataset of mix and 

curing parameters, ANN demonstrated the highest accuracy, 

followed by SVM, while GEP generated interpretable 

equations but had lower accuracy. The study emphasized 

ANN's great capacity to describe complex nonlinear behavior 

and SVM's durability with high-dimensional data, making 

them useful for predicting SCC intensity. 

 

Ghorpade & Koneru (2018) – Pattern Recognition 

Neural Network For SCC Grades9.Ghorpade and Koneru 

(2018) used a pattern recognition neural network (PRNN) to 
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classify self-compacting concrete (SCC) mixes into strength 

grades rather than forecasting actual compressive strengths. 

Using a dataset of mix design characteristics, the model 

accurately classified SCC into classes such as M30, M40, and 

M50. This approach streamlines quality control and enables 

faster, automated decision-making in concrete manufacturing. 

 

III. OBJECTIVE 

 

The prediction of concrete compressive strength is 

evolving as smart materials and AI approaches become more 

prevalent. Traditional empirical approaches frequently fail 

when used to modern concretes incorporating pozzolans, 

admixtures, or industrial byproducts. This paper investigates 

the limitations of traditional methodologies and assesses the 

ability of AI models, such as Artificial Neural Networks 

(ANNs), Evolutionary ANNs (EANNs), and hybrid systems, 

to reliably predict compressive strength. By collecting relevant 

information and evaluating model performance, the study 

hopes to demonstrate AI's effectiveness as a speedier, more 

adaptive alternative to destructive testing. Furthermore, it 

investigates smart concrete technologies that incorporate self-

sensing and self-healing characteristics in order to enable 

sustainable, intelligent infrastructure. Smart materials and 

artificial intelligence work together to provide a game-

changing solution for efficient, data-driven decision-making in 

modern building. 

 

IV. METHODOLOGY 

 

This study investigates how well machine learning 

predicts self-compacting concrete's compressive strength.  

Using reliable databases like Elsevier, Springer, SCOPUS, 

Web of Science, IEEE, the Turkish Journal of Engineering, 

and ScienceDirect, a thorough literature review was carried 

out.  These resources were chosen because they are pertinent 

to real-world AI applications in research.  In order to reflect a 

contemporary, data-driven approach, the methodology 

concentrated on finding, assessing, and summarizing studies 

that combine machine learning with concrete property 

prediction. This study investigates how well machine learning 

predicts self-compacting concrete's compressive strength.  

Using reliable databases like Elsevier, Springer, SCOPUS, 

Web of Science, IEEE, the Turkish Journal of Engineering, 

and ScienceDirect, a thorough literature review was carried 

out.  These resources were chosen because they are pertinent 

to real-world AI applications in research..In order to reflect a 

contemporary, data-driven approach, the methodology 

concentrated on finding, assessing, and summarizing studies 

that combine machine learning with concrete property 

prediction. 

 

 
Fig.1 Diagram illustrating the methodology adopted for 

selecting pertinent articles for this study. 

 

V. CASE STUDY 

 

PREDICTION OF CONCRETE COMPRESSIVE AND 

FLEXURAL STRENGTH-Numerous approaches have been 

utilized globally to estimate the compressive and flexural 

strength of concrete. These methods are typically categorized 

into empirical strategies and computational modeling 

techniques. Approaches Empirical models, which frequently 

relate strength to variables like the water-to-cement ratio, 

reproduce experimental results under particular circumstances.  

Although they are helpful in demonstrating how mix 

components affect strength, they need to be thoroughly 

validated to guarantee correctness.  To improve predictions, 

some models additionally include correction factors. 

 

Computational Modeling Similar to finite element 

analysis, computational modeling uses microstructure data and 

thermodynamic equations to simulate tangible behavior.  In 

order to simulate hydration, pixel-based techniques arrange 

cement particles in a specific area; adding experimental data 

enhances realism and accuracy. 

 

Mechanical ModelingConcrete behavior is 

represented by mechanical models, such as the spring-and-

dashpot analogy, which associate age effects with a dashpot 

and the cement matrix with a spring.  Although these models 

are helpful for forecasting compressive strength, they 

frequently lose accuracy because they are unable to capture 

time-dependent behavior, particularly in early-age strength. 

Statistical Methods        Multiple linear regression is one 

statistical model that uses empirical data to determine the 

associations between variables.  Despite being simple to use, 

they frequently lack the flexibility of more sophisticated 

approaches and require big datasets, depending on how well 

the selected model fits. 

 

When predicting concrete strength, regression 

approaches aid in quantifying the correlations between inputs 

and results.  Despite their occasional complexity, they provide 

high accuracy, particularly when combined with supporting 

data such as slump tests and correlation analysis.  By 

optimizing input factors, a reviewed study that employed a 

multivariable power equation achieved a 99.99% correlation 

with test results.  The reliability of the model was further 

enhanced by standardization.  In primarily linear systems, 
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regression is still effective and frequently outperforms 

sophisticated models like neural networks. 

 

Artificial Intelligence Applications  In order to 

handle difficult tasks like pattern recognition, learning, and 

optimization—all of which are crucial in civil engineering—

artificial intelligence (AI) mimics human reasoning.  To 

address uncertainty and represent nonlinear phenomena, 

methods like ANFIS, neural networks, and genetic algorithms 

are employed.  Even while AI models are quite accurate and 

versatile, their real-world performance depends on big, high-

quality information. 

 

FUZZY LOGIC -Fuzzy logic, introduced by Lotfi Zadeh, has 

played a key role in improving how computers handle 

complex decisions and uncertainties. His work led to the 

development of fuzzy inference systems like Mamdani, 

Sugeno, and Takagi models, which are now widely used to 

better simulate real-world processes. Unlike traditional logic 

that sees things as simply true or false, fuzzy logic allows for 

partial truths—meaning something can belong to multiple 

categories to different degrees. This makes it much better at 

dealing with situations where boundaries aren’t clear-cut 

(Duan et al., 2013; Erzin, 2007; Sergio & Mauro, 1997; Silva 

et al., 2021; Syed et al., 2023). For example, instead of 

labeling people strictly as ‘short’ or ‘tall’ based on height, 

fuzzy logic recognizes the in-between cases. While classic set 

theory is often seen as too rigid, fuzzy sets provide a smoother 

way to represent membership. In fields like concrete 

technology, Fuzzy Logic Controllers (FLCs) are especially 

useful because they handle the complex, nonlinear behavior of 

materials better than traditional models, helping to predict and 

control compressive strength more effectively. 

 

NEURAL NETWORKS-Neural networks have come a long 

way since the 1950s, evolving from simple mechanical tasks 

to mimicking human brain functions for complex problem-

solving. These Artificial Neural Networks (ANNs) are made 

up of connected “neurons” that work together to process 

information, making them great at handling tricky, nonlinear 

problems. In civil engineering, ANNs are used for things like 

detecting structural damage, modeling materials, and 

designing concrete mixes (Saridemir, 2010). For example, 

Gandomi and Roke (2015) combined ANNs with fuzzy logic 

to predict the strength of self-compacting concrete, achieving 

a strong accuracy with an R² of 0.9767 using six neurons and 

500 training cycles. Later, Khan et al. (2021) improved the 

model by tweaking the layers and neurons, reducing errors 

significantly. Faradonbeh et al. (2018) also showed great 

results, confirming that factors like the water-to-binder ratio 

affect strength predictions. Overall, neural networks 

consistently outperform traditional methods, especially for low 

to medium strength concrete mixes. 

GENETIC PROGRAMMING-Genetic Programming (GP) 

is a smart approach inspired by natural evolution, where 

computer programs “evolve” by mimicking processes like 

selection, mutation, and crossover to solve complex problems. 

A special type called Gene Expression Programming (GEP) 

fine-tunes these programs by testing how well they perform 

and making improvements over time. For example, 

Faradonbeh and colleagues (2018) looked at how different 

population sizes affect models when fly ash partially replaces 

cement, focusing on predicting concrete’s compressive 

strength after 28 days. Their model used four key inputs: 

water, cement, coarse aggregates, and fine aggregates. They 

analyzed data from 1,442 tests covering 68 different concrete 

mixes, with strengths ranging from 18 to 27 MPa, water-

cement ratios between 0.39 and 0.62, and aggregate sizes from 

25 to 100 mm. Researchers like Ferreira (2002, 2006) tested 

these models against real-world data and found them to be 

highly accurate. This shows how GP-based methods can 

effectively capture the complex relationships in concrete 

materials and their strength. 

 

PARAMETERS IN MACHINE LEARNING MODELS-In 

machine learning, hyperparameters are settings chosen before 

training that guide how algorithms learn, such as learning rate, 

cluster numbers, or treedepth.  Hyperparameters govern the 

learning process (e.g., batch size) or model structure (e.g., 

number of hidden layers), in contrast to trainable parameters 

(e.g., weights).  They impact model accuracy, training 

duration, and computing cost and need to be predetermined.  

The majority of models require careful hyperparameter 

selection to balance underfitting and overfitting and guarantee 

acceptable performance on new data, even though simple 

models like linear regression might not require tweaking.  For 

instance, the number of neurons per layer in a neural network 

is dependent on the number of layers. 

 

UNTRAINABLE PARAMETERS-Model performance 

depends on hyperparameters, but if they are not adjusted 

correctly, overfitting—in which the model learns noise rather 

than real patterns—can result in subpar performance on fresh 

data.  In regression, for instance, raising the polynomial 

degree may reduce training error but frequently degrades test 

accuracy.  In order to prevent this and preserve model 

robustness, structural parameters such as polynomial degree 

are fixed during training. 

 

HYPERPARAMETERTUNING IN MACHINE 

LEARNING- 
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Only a small number of the numerous 

hyperparameters have a significant effect on the model's 

performance; the most crucial ones are learning rate and 

network structure (layers, neurons).  There is less of an impact 

from others, such as batch size and momentum (Asteris et al., 

2021; Mehmannavaz et al., 2014; Neira et al., 2020).  Large 

batches can occasionally be beneficial, but studies show that 

mini-batch sizes of two to thirty-two typically perform best.  

Because over-optimizing small parameters can increase 

complexity without enhancing results, careful tweaking is 

essential.  

 

HYPERPARAMETER OPTIMIZATION-To reduce loss 

and increase model correctness on test or validation data, 

hyperparameter optimization determines the optimal set of 

hyperparameters.  In order to direct the search for ideal 

settings, it interprets the loss as an objective function. 

 

REPRODUCIBILITY IN MACHINE LEARNING-In 

machine learning, reproducibility is essential, necessitating 

meticulous monitoring of parameters, models, and 

experiments to guarantee reliable outcomes.  Replication is 

hampered by frequent code or data changes in the absence of 

adequate infrastructure.  These days, researchers can maintain 

and share datasets, configurations, and measurements with the 

aid of tools and web platforms. This is crucial in deep 

learning, where complexity makes reproducibility difficult 

(Khan, 2012). 

 

DEVELOPING MACHINE LEARNING MODELS - 

Machine learning models can be developed using different 

strategies based on how much labeled data is available. As 

outlined by Khan (2012) and Onyelowe et al. (2021), there are 

four main approaches: supervised, unsupervised, semi-

supervised, and reinforcement learning. 

 

Supervised learning - Is like learning with a teacher. The 

model is trained on data where both the inputs and correct 

outputs are known. It learns from these examples and can then 

make accurate predictions on new, unseen data—great for 

tasks like spam detection or medical diagnosis. 

 

Unsupervised learning -  is more about self-discovery. The 

model looks at data without any labels and tries to find hidden 

patterns or groupings on its own. It’s useful when you don’t 

know exactly what you’re looking for, like grouping similar 

customer behaviors or detecting unusual activity. 

 

Semi-supervised learning - mixes both worlds. A small 

amount of labeled data helps guide the model, while a larger 

set of unlabeled data helps it learn more efficiently. This 

approach is helpful when labeling is expensive or time-

consuming. 

 

Reinforcement learning - is like learning by trial and error. 

The model interacts with an environment, makes decisions, 

and learns from rewards or penalties. It’s commonly used in 

robotics, gaming, and self-driving cars. 

 

Each method has its strengths depending on your goals and the 

data you have. 

 

CATEGORIES OF MACHINE LEARNING MODELS - 

Machine learning tasks are generally divided into 

*classification* and *regression* problems (Prasad et al., 

2019). *Classification* assigns data to specific categories 

(e.g., spam vs. not spam), while *regression* predicts 

continuous numerical values (e.g., house prices). Some 

algorithms are flexible enough to handle both. 

 

Popular classification algorithms include - Support Vector 

Machines (SVM), Random Forest, Decision Tree, Logistic 

Regression, Naive Bayes, K-Nearest Neighbors (KNN) 

 

Common regression algorithms include - K-Nearest Neighbors 

Regression, Decision Tree Regression, Random Forest 

Regression, Neural Network Regression, Linear Regression. 

 

RECOGNIZING AND MITIGATING OVERFITTING IN 

MACHINE LEARNING - Overfitting occurs when a model 

picks up on the noise and anomalies in the training data in 

addition to the underlying patterns.  High accuracy on training 

sets may arise from this, but on fresh, untested data, it 

frequently leads to subpar performance (Dias & Pooliyadda, 

2001; Nguyen et al., 2019). 

 

Overfitting can be caused by - Limited training data, Irrelevant 

features or noise in the dataset, Overly complex models, 

Excessive training duration. 

 

Regularization (L1, L2), learning curve analysis, and 

cross-validation are some of the methods used to identify and 

stop overfitting.  Additionally, techniques like feature 

selection, data augmentation, dropout, and early termination 

aid in enhancing generalization.  Building dependable models 

in deep learning requires controlling overfitting, which 

sometimes results from an over emphasis on small training 

features. 

 

CAUSES OF OVERFITTING - When the training data is 

excessively sparse or noisy, the model may overfit and learn 

patterns that are not very generalizable.  It frequently 

manifests as early gains in validation metrics that are followed 
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by a drop.  This implies that the model'sadaptation to the 

training datais excessive.  Preventing overfitting requires 

striking a balance between dataset quantity and model 

complexity. 

 

IDENTIFYING OVERFITTING IN MACHINE 

LEARNING – 

 

Validation Loss Gap - If training loss decreases while 

validation loss increases, the model is likely overfitting and 

failing to generalize. 

 

Learning Curve Analysis - A widening gap between high 

training accuracy and lower validation accuracy signals 

overfitting. 

 

Regularization Check - Adding a regularization term can 

reveal if the model is too complex and needs simplification. 

Visual Inspection - Comparing model predictions to training 

data can highlight if the model is memorizing examples 

instead of learning patterns. 

 

TECHNIQUES TO PREVENT OVERFITTING IN ML –  

 

Regularization (L1/L2) - Adding penalties to the loss function 

helps keep the model from becoming too complex by limiting 

the size of its parameters. 

 

Cross-Validation and Early Stopping - Checking the model’s 

performance on different data splits ensures reliability, while 

stopping training early prevents it from over-learning the 

training data. 

 

Data Augmentation - Generating new, varied samples by 

modifying existing data helps the model learn broader 

patterns. 

 

Feature Selection - Removing irrelevant or redundant inputs 

simplifies the model and reduces the chance of it focusing on 

noise. 

 

Dropout - Temporarily disabling some neurons during training 

encourages the model to develop more robust, generalized 

features. 

 

Using these methods together helps build models that perform 

well not only on training data but also on new, unseen data 

with consistent accuracy. 

 

FUZZY LOGIC APPROACH –  

 
A fuzzy rule base, fuzzification unit, inference 

engine, and defuzzification unit are the four main components 

of a conventional fuzzy logic system (Golafshani et al., 

2020b).  It begins by employing membership functions such as 

Gaussian or trapezoidal to transform clear inputs into fuzzy 

sets.  Inputs may concurrently be a part of more than one 

fuzzy subset.  The system mimics human reasoning by using 

language IF-THEN rules (e.g., "IF A THEN B"), which are 

then interpreted by an inference engine to provide fuzzy 

outputs.These hazy outcomes are then transformed into 

precise numerical values for decision-making by the 

defuzzification unit (Ben et al., 2022; Golafshani et al., 

2020b). 

 

PERFORMANCEEVALUATION OF THE GEP MODEL 

–  

To ensure the reliability of the Gene Expression 

Programming (GEP) model, it is recommended to maintain a 

dataset-to-feature ratio of at least 3:1, with 5:1 considered 

optimal. The model’s accuracy is evaluated using key metrics 

such as RMSE, MAE, and RSE, which measure how well the 

predictions align with experimental results (Ben et al., 2022; 

Golafshani et al., 2020b). External validation is performed 

through regression analysis, where slopes (k or k′) close to 1 

and passing through the origin indicate accurate prediction of 

Self-Compacting Concrete (SCC) compressive strength (fc). 

The model’s effectiveness heavily depends on carefully 

chosen fitting parameters, often refined through trial and error 

or experimental tuning. Critical factors impacting GEP 

performance include population size (number of 

chromosomes), head size, and the number of genes. This study 

explored five head sizes—8, 9, 10, 12, and 14—with three or 

four genes each. The head size governs the complexity of 

functional units, while the number of genes defines the 

model’s structural components. These parameters are 

optimized to achieve the best predictive performance 

(Babatunde et al., 2022; Mogaraju, 2023; Shariati et al., 2021). 

These design decisions are fine-tuned through GEP to 

optimize predictive accuracy. A flowchart illustrating the GEP 

process is provided in Figure 3. 

 

MODEL EVALUATION CRITERIA –  
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The correlation coefficient (R) is widely used to 

assess how closely a model’s predictions align with actual 

outcomes. However, it has notable limitations—particularly its 

insensitivity to scaling—which can result in misleading 

assessments if used in isolation. To address this, the current 

study incorporates a broader set of evaluation metrics, 

including Mean Absolute Error (MAE), Relative Squared 

Error (RSE), and Relative Root Mean Square Error (RRMSE). 

These metrics provide a more nuanced understanding of 

prediction accuracy by capturing both the magnitude and 

variability of errors. Additionally, a composite performance 

index proposed by Gandomi and Roke, which integrates R and 

RRMSE, is employed to ensure a more balanced and 

comprehensive evaluation of the model’s performance. The 

mathematical foundation for the model's predictions is 

represented by the following generalized regression equation: 

 

Fc = f(α + β₁Y₁ + β₂Y₂ + β₃Y₃ + ... + βₙYₙ) + ε   (1) 

 

Where: 

Fc = predicted compressive strength, 

α = regression intercept, 

β₁ to βₙ = regression coefficients, 

Y₁ to Yₙ = input variables (predictors), 

ε = error term capturing model deviations. 

 
 

EXPERIMENTAL CONFIGURATION FOR 

ARTIFICIAL NEURAL NETWORK - Concrete specimens 

were evaluated for both compressive and flexural strength at 

standardized curing intervals of 7, 14, 21, and 28 days, using 

cube specimens for compressive testing and beam specimens 

for flexural testing. At the end of the 28-day curing period, the 

cube samples were also weighed to calculate their density, 

offering further insight into the material’s properties. The 

architecture of the artificial neural network (ANN) employed 

in the analysis is illustrated in Figure 4. Previous studies [72–

75] have investigated the predictive capabilities of Gene 

Expression Programming (GEP) and Multivariate Adaptive 

Regression Splines (MARS) in estimating the 28-day 

compressive strength of self-compacting concrete (SCC). 

Further research [76–81] focused specifically on using MARS 

models to predict SCC strength based on a variety of input 

parameters, demonstrating the approach’s potential for 

accurate, data-driven predictions. The outcomes confirmed 

that both GEP and MARS offered strong predictive accuracy, 

as demonstrated in Figures 5, 6, and 7, and summarized in 

Table 1. 

 

GAPS IN KNOWLEDGE - Despite advancements in using 

artificial intelligence (AI) to predict the properties of self-

compacting concrete (SCC), several key challenges remain 

that impact the accuracy and reliability of these models 

 

Data Limitations - AI models require large, high-quality 

datasets to learn effectively. Variability in materials, curing 

processes, and testing methods makes it difficult to gather 
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comprehensive and consistent data that accurately reflects 

SCC behavior. 

 

Feature Selection - Identifying the most influential input 

variables, such as mix composition, curing duration, and 

admixtures, is essential for building robust models. This 

requires thorough analysis to determine which factors most 

affect compressive strength. 

 

Model Transparency - While deep learning models offer 

strong predictive power, they often lack 

interpretability.Understanding how individual inputs influence 

predictions is critical for practical use but remains a challenge. 

Generalization Challenges - AI models may perform poorly on 

data that differs from their training set. Techniques like 

transfer learning and domain adaptation are needed to improve 

adaptability. 

 

 
Fig.4  AAN Architecture 

 

Validation Strategies - Accurate model evaluation requires 

proper metrics (e.g., MAE, RMSE) and validation techniques 

such as cross-validation to ensure generalizability and 

reliability. 

 

 
Fig.5  Scatter plot comparing the observed and predicted 

compressive strength during the training phase of the GEP 

model. Reference: Milad, B., and Valiollah, A. (2018). Civil 

Engineering Journal, Vol. 4, No. 7, July. 

 

 

Uncertainty and Variability - Material inconsistencies and 

measurement errors hinder precise prediction. Techniques like 

ensemble modeling and Bayesian neural networks help 

quantify uncertainty, enhancing model trustworthiness. 

 

 
Fig. 6 Scatter plot illustrating the observed vs. predicted 

compressive strength during the testing phase of the GEP 

model. Source: Milad, B., and Valiollah, A. (2018). Civil 

Engineering Journal, Vol. 4, No. 7, July. 

 

VI .CONCLUSION 

 

This review highlights that artificial intelligence (AI) 

techniques are highly effective in predicting the compressive 

strength of self-compacting concrete (SCC), with model 

results closely matching experimental data. Most AI models 

reviewed achieved a strong correlation, with coefficients of 

determination (R²) above 0.8, indicating reliable predictions of 

the 28-day compressive strength. Among these, Artificial 

Neural Networks (ANN) demonstrated particularly consistent 

and accurate performance, making them a preferred choice for 

civil engineering applications where precise property 

estimation is crucial. 

 

AI models offer significant advantages by reducing 

the need for time-consuming and costly physical testing, 

thereby accelerating construction processes. Reinforcement 

learning methods, such as the Deep Deterministic Policy 

Gradient (DDPG) algorithm, show promise but require careful 

hyperparameter tuning to maximize accuracy by minimizing 

error. 

 

A common challenge in AI modeling is overfitting, 

where models perform well on training data but poorly on new 

data. This can be addressed using techniques like cross-

validation, data augmentation, dropout, and thoughtful feature 

selection. These strategies enhance the model’s ability to 

generalize beyond the training set, ensuring dependable results 

in real-world scenarios. Overall, AI provides a powerful and 

efficient toolset for advancing SCC strength prediction with 

practical benefits for engineering projects. 
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