
IJSART - Volume 11 Issue 6 – JUNE 2025 ISSN [ONLINE]: 2395-1052

Page | 61 www.ijsart.com

Handling Windows System Operations

Using Hand Gestures

Dr. T. Amalraj Victoire1, M.Vasuki2, Hari Priya A3
1 Associate Professor, Department of MCA, Sri Manakula Vinayagar Engineering College, Puducherry-605107, India.
2Associate Professor, Department of MCA, Sri Manakula Vinayagar Engineering College, Puducherry-605107,.India.

3PG Student, Department of MCA, Sri Manakula Vinayagar Engineering College, Puducherry-605107 India.

Abstract- The main goal of the proposed system Handling

Windows System Operations Using Hand Gestures is to

improve human-computer interaction through the ability of

manipulation of Windows-based operations through natural

hand movements. This hand-controlled interface makes use of

computer vision techniques and machine learning models to

identify dynamic and static hand gestures in real-time using a

webcam. Through such frameworks like MediaPipe hand

tracking and interacting with automation libraries like the

PyAutoGUI, the system can map the recognized gestures into

system-level commands like opening of apps, handling files,

changing volume, and manipulating the mouse pointer. The

intuitive and touch-less interaction pattern facilitates

accessibility, on the alternative, especially for the users, who

have some physical limitations or are located in such

environments, where the typical input devices are

inapplicable. The system is developed with an idea of

modularity and scalability in mind which makes it possible to

add a new set of gestures and capabilities. With efficient

gesture recognition and low latency response, as well as a

user-friendly interface, the solution offers a viable and novel

way of hands-free computing.

Keywords- Hand Gesture Recognition, Human-Computer

Interaction (HCI), Computer Vision, MediaPipe, PyAutoGUI,

Real-Time Gesture Control, System Automation, AI-Based

Interfaces, Accessibility Technology, Windows Operations

Control

I. INTRODUCTION

The modern world driven by technologies witnesses

the demand to introduce more natural and intuitive, and

contactless ways of interacting with computer systems.

Conventional input devices such as keyboards and mice, as

effective as they are, restrict accessibility and productivity in a

number of situations. To handle this, the proposed system –

Handling Windows System Operations Using Hand Gestures –

proposes a control interface based on hand gesture, which

allows users to perform significant Windows operations by

moving their hands, which are captured through a webcam.

With the help of computer vision and machine learning

techniques, and in particular, MediaPipe for real-time hand

tracking and PyAutoGUI for simulating keyboard and mouse

input, such as application launching, control of volume,

moving the cursor, etc. without having to touch the device is

possible. The architecture consists of modules for gesture

detection, mapping of gestures to functions to be performed

and unhindered communication between the operating system

and the implemented functions. This novel approach does not

only enhance the user experience and ease of use, especially

for those who are physically challenged – but also complies

with the trends of touchless interaction in healthcare, public

kiosks, and smart environments. Built with scalability and

efficiency in mind, the system could be expanded in order to

allow for the support of custom gesture sets, multi-hand

recognition, integration with speech, and support for different

platforms. This project makes an important step to human-

centered and more accessible computing in the age of

intelligent interfaces.

II. LITERATURE SURVEY

Mitra & Acharya (2018) researched on early hand gesture

recognition systems based on color segmentation & shape

based tracking which highlighted need for real time

responsiveness. Sharma & Desai (2019) investigated the use

of contour and convex hull techniques in gesture

classification, increasing the accuracy in determining the

gestures’ boundaries. Ahmed & Kaur (2020) examined

fingertip detection techniques used with a view to increase

gesture accuracy and reliability of system controls. Wang & Li

(2020) suggested that the model of MediaPipe’s hand tracking

can be applied to gain efficient detection of landmarks while

reducing latency in gesture recognition. Verma & Singh

(2021) carried out gesture-driven desktop automation with the

use of such Python libraries as PyAutoGUI, allowing direct

manipulation with system by predefined gestures. To deal with

the changes in the environment, Kumar et al. (2021) proposed

using adaptive thresholding for improved hand detection in

changing lighting circumstances. According to Gupta & Patel

(2021), gesture-to-command mapping is also an area of study,

according to its capabilities to enhance the human-computer

interface. Thomas & Roy (2022) incorporated CNN-based

IJSART - Volume 11 Issue 6 – JUNE 2025 ISSN [ONLINE]: 2395-1052

Page | 62 www.ijsart.com

models to classify, with better accuracy in recognizing

complex gestures. Zhang & Mehta (2022) addressed usability

of differently-abled users with increased accessibility achieved

by hand gestures. Das & Sharma (2022) studied gesture-based

security, where they proposed gesture-authenticated access for

desktop environments. Liu et al. (2023) explored the gesture

detection using embedded webcams for real-time control

without external sensors. Parker & Evans (2023) focused on

the cross-platform adaptability with the gesture control

functionality available for various operating systems.

Ramakrishnan & Iyer (2023) presented a multi-gesture

detection system for processing simultaneous commands that

boost the interaction speed. Wilson & Chen (2024) considered

reduction of latency applying multi-threaded Python

operations to increase command execution. Taylor & Johnson

(2024) showed future directions concerning a mixture of

gesture control with AI agents that provide for intelligent

system automation with context awareness.

This group of studies demonstrates the development

of the gesture-controlled interfaces for a system-level

operation, enhancing the ongoing interaction, accessibility,

and control of users over the system using touchless

computing techniques.

III.PROBLEMSTATEMENT

The human interaction with computers through the

traditional human-computer interaction traditionally depends

on input devices such as the keyboards, mouse and

touchscreens, and this can be limiting, inefficient, and

inaccessible in different situations. These interfaces are also

unable to serve physically disabled users, situations in which

hands-free interaction is needed, or in situations, where it is

impossible to interact directly with hardware. There are

gesture recognition technologies, but most tend to be complex,

hardware based, or change from uniform state under different

lighting and background settings. There are many systems that

are not sharp in perceiving the slightest movements of the

fingers and have problems with real-time reactivity

manifesting itself in the form of lag or a misinterpretation of

commands. Moreover, current solution involves external

sensors or depth cameras, thereby adding to the cost of the

system and decreasing its portability. Software only solutions

also struggle with accurate tracking and detection of hands in

cluttered and low contrast visual setting. Machine learning-

based systems for gestures can potentially provide better

accuracy, however, often require massive training datasets and

significant computations, which makes it hard to host them on

a regular setup of consumer hardware. There is usually a lack

of user-level customization and flexibility, and that makes it

hard for users to personalize gestures and map them well to

system operations. In addition, gesture systems very often fail

to include control over the low level operating system,

limiting their usefulness to only elementary tasks and not

including full desktop automation capability. Security and

privacy issue, such as unintended command execution,

unauthorized gesture activation, etc. are also major reliability

challenge. In addition, real time gesture processing bears

latency and CPU overhead if not optimized correctly to

deteriorate the overall user experience. With the advent of

continued evolution of computing into more natural and

intuitive interface, there exists critical need for a low cost

gesture-based control system, software-driven, accurate, and

compatible with Windows system operations. To overcome

these limitation, it calls for an effective and user-friendly

solution that will be capable of recognizing gestures in real

time using standard webcams and system-level-commands as

well as capably fulfilled for purposes of accessibility,

flexibility and efficiency with regards to different users and

applications.

IV.PROPOSED SYSTEM ARCHITECTURE

The system proposed designates a real time hand

gesture system that controls managing system operations of

windows. The architecture is modular in nature and has four

main components.

1.Input Acquisition Module:

Grabs live video stream through a webcam. This raw data

serves as a basic input for the analysis of gesture.

2.Preprocessing Module:

Grabs frames using OpenCV and converts them to the RGB

and HSV color spaces; MediaPipe is used to detect hand

landmarks. Captures the region of interest (ROI) for finger

detection with the use of an orange color marker.

3.Gesture Recognition Module:

Interprets gestures using hand landmarks and some criteria.

 Swipe gesture (left/right) for window navigations.

 Static gestures (open hand, closed fist, two fingers) for

system functions such as, minimize, restore, and mute.

 Color-based detection used for volume control from

finger movement having an orange tip.

4.Execution Module:

IJSART - Volume 11 Issue 6 – JUNE 2025 ISSN [ONLINE]: 2395-1052

Page | 63 www.ijsart.com

Maps translated gestures to system level operations

with the use of automation libraries such as pyautogui and

pychaw.

Fig1:System Architecture diagram

V. ARCHITECTURAL DESIGN

Fig2:Architectural design diagram

The architecture of our system is designed to

recognize the gestures of human hand through the use of

computer vision techniques and initiate the operations at the

system level. The camera records the real-time video frames

which are then processed in order to detect, and isolate the

Region of Interest (ROI) using OpenCV. Such frames are

transformed to RGB and HSV color spaces, which facilitates a

hand and tip detection. The activity of tracking hand

landmarks and the recognition of gestures are provided by

MediaPipe. Backend logic then parses these gestures and

translates them to certain operations such as volume alteration,

switching of windows, or silencing the system. These

commands are performed with the help of PyAutoGUI for UI

automation and Pycaw for audio control. Such interaction

output will be immediately implemented in Windows

operating system, giving the user a fluid and interactive

control experience based on gesture.

VI.TECHNOLOGIESUSED

OpenCV: Made for capturing Webcam feed and getting

individual frames on the fly. It allows effective processing of

images and video analysis as the initial part of gesture

recognition.

MediaPipe: The framework for machine learning that is

developed by Google, which is used to locate and track hand

landmarks. MediaPipe Hands model detects 21 hand keypoints

that are important in determining finger positions and

orientations.

PyAutoGUI: A generic cross-platform GUI automation library

that emulates mouse movement, keyboard presses etc at

system levels on the basis of detected gestures like switching

windows, closing applications etc.

Pycaw: A Python library that is constructed to interface

Window’s Core Audio API. It allows for volume control

which is done using hand gestures since it maps the distance

of a gesture (such as between thumb and index) to the volume

levels.

Python: The main programming language that was used for

constructing the system and combining OpenCV, MediaPipe,

PyAutoGUI, and Pycaw into a unified application.

VII.PROPOSED TECHNIQUES

To allow the real-time control of a system using

gestures, the proposed project uses a mixture of computer

vision, hand landmark detection, and rule-based logic in order

to recognize gestures and implement system commands. The

overall architecture combines input processing from the

webcam with MediaPipe’s machine learning abilities as well

as system-level interfacing tools such as PyAutoGUI and

Pycaw that allow for dynamic command execution powers.

Measures to initiate the use of gesture-based system

control:

Step 1: Frame Extraction and Preprocessing (OpenCV –

Python Backend).

The system starts by getting live video feed from the

user’s webcam using OpenCV. Every frame is extracted in

real time, and preprocessed so that it would be consistent and

intelligible for subsequent analysis. This step is essential for

keeping the sensitiveness and the precision of the system at

the levels of different lighting and environmental conditions.

IJSART - Volume 11 Issue 6 – JUNE 2025 ISSN [ONLINE]: 2395-1052

Page | 64 www.ijsart.com

Step 2: MediaPipe Hands Model (Hand Landmark

Detection)

After frames have been taken, the MediaPipe Hands

model is applied to identify 21 important landmarks on hands

such as fingertips, joints, and palm base. These landmarks are

the basis for deducing the positional hand movements such

that the system can understand the spatial relations between

fingers and the hand posture.

Step 3: Gesture Classification Using Rule-Based Logic

Rule-based logic is used to classify gestures by

already defined rule-based logic of analyzed detected

landmarks. For example, the gap between the thumb and the

index finger can mean a volume adjustment gesture and

certain patterns of fingers can trigger window switching or

mute/unmute commands. These rules are drawn up from

geometric calculations and relative positioning of the hands.

Step 4: System Commands Execution (Integration with

PyAutoGUI and Pycaw)

After classification, the right command is executed.

For hand movements for controlling audio, the Pycaw library

alters the volume of the system according to the movements of

the hand. PyAutoGUI simulates the press of the keyboard and

the movement of the mouse for generalsystem processes, such

as switching windows or controlling screens. This smooth

integration guarantees real-time responsiveness as well as

hands-free system functioning.

VIII.CONCLUSION AND FUTURE ENHANCEMENTS

The gesture system control with computer vision and

AI proves an intuitive, hands-free way of managing Windows

operating systems. Bringing together real-time webcam inputs,

MediaPipe hand landmark detection, and rule-based gesture

classification, the system enables users to implement

commands like manipulation of volumes, switching windows,

and mute/unmute activities using one’s own natural hand

gestures. The combination of OpenCV for video manipulation,

PyAutoGUI, and Pycaw for the system-level communication

guarantees a stable and quick reaction. This architecture does

not only remove the traditional types of input devices, but also

increases the accessibility, providing more inclusive user

experience in various environments like smart homes,

accessibility solutions, and multitasking workflows.

The gesture-controlled system enhancement for the

future will include increasing the accuracy of gesture

recognition and robustness of the system. Adapting machine

learning-based gesture classification can substitute or support

rule-based logic upon which the system will be able to learn

and be able to adjust to more complex or user-specific

gestures. A gesture calibration phase will be useful in

personalizing the interaction experience for various users and

lighting conditions. For a more general applicability, it is

possible to provide support for multi-hand gestures and

context-aware interactions and thus further support more

sophisticated functions like zooming or applications launch or

screen navigation. Moreover, the addition of real-time

feedback mechanisms via the GUI can notify the users about

the detection of gestures, thus eliminating errors and

enhancing usability. Finally, the solution’s deployment to

cross-platform settings or integration into the devices used by

humans (from mobile and wearable devices).

Fig 3: Switching To Previous Tab

REFERENCES

[1] F. Zhang, Y. Wu, H. Liu , “A survey on hand gesture

recognition using computer vision techniques”, Journal of

Image and Graphics 10 (4) : pp.123–134 , 2022.

[2] H. Cai, R. Gupta, and K. Tiwari, “Real-time dynamic

hand gesture recognition using MediaPipe and deep

learning”, In Proceedings of the 2021 International

conference on computer vision systems, p. 211-218, 2021.

[3] S. Mittal, A. Pahuja, “Gesture-based volume control

system using OpenCV and PyAutoGUI”, in International

Journal of Computer Applications, vol. 184, no.12, 35-40,

2022.

[4] R. Singh and P. Mehta, “Hand gesture controlled user

interface for human-computer interaction,” in Proceedings

of the 8 th International Conference on Signal Processing

and Integrated Networks (SPIN), IEEE, 2022, pp. 540–

545.

[5] M. Patel and D. Shah. “Automated system control using

fingertip tracking with color detection”. International

journal of engineering research and technology. Vol. 11,

no. 5, pp. 118-122, 2021.

[6] J. Wang, K. Lee, L. Chen, “Gesture recognition with

MediaPipe framework: ” Applications and limitations”,

IJSART - Volume 11 Issue 6 – JUNE 2025 ISSN [ONLINE]: 2395-1052

Page | 65 www.ijsart.com

International Journal of Artificial Intelligence and

Applications, vol. 13, no. 1, pp. 45–53, 2023.

