
IJSART - Volume 11 Issue 4 – APRIL 2025 ISSN [ONLINE]: 2395-1052

Page | 1224 www.ijsart.com

Development of A Voice-Based Virtual Assistant For

Windows

Navya S1, Pavana N2, Sanjana H Rao3, Sanvi U4, Rajashekar M B5
1, 2, 3, 4 Dept of CSE

5Associate Professor, Dept of CSE
1, 2, 3, 4, 5 GSSSIETW, Mysuru, India

Abstract- For this project, we’re building a virtual assistant

designed to make daily tasks easier and more interactive. The

idea is that you can talk to it, just speak commands, and it’ll

handle things like setting reminders, opening websites, and

running system functions. If it doesn’t fully understand a

question or command, it uses AI to figure it out and still

provide a helpful answer.

One of the key features we focused on is making it

hands-free. You simply say a wake word, and it’s ready to

go—no need to click or type anything. It’s also built to handle

mistakes smoothly, so if something goes wrong, it won’t crash

the whole system. We wanted to keep things simple and clean,

so there’s an easy-to-use interface for managing reminders

and interacting with the assistant.

On the technical side, we’ve made sure it’s fast and

reliable. It stores data securely, can scale up if we need to add

more features, and works across different platforms. We also

designed it to be adaptable to future needs. We didn’t want it

to just work now, but to be something that can evolve as new

technologies and user requirements emerge. Our goal is to

create something that’s easy to use, dependable, and smart

enough to grow as users' needs change.

Keywords- Voice interaction, Reminder management, AI-

driven responses

I. INTRODUCTION

 These days, with how fast AI and voice tech are

developing, it’s becoming easier to create tools that can

actually help with everyday tasks. For this project, we decided

to build a virtual assistant that you can talk to — kind of like a

smart helper for your computer. It can do things like open

websites, manage reminders, carry out system commands, and

even chat with you a bit.

The whole thing is made using Python, mainly

because of how many useful libraries it has. We used

speech_recognition so it can listen to voice commands,

pyttsx3 so it can reply with speech, and CustomTkinter to give

it a cleaner, more modern interface. You can either say "Hey

Windows" to start talking to it, or just use the buttons on the

screen if you prefer clicking around.

What makes this assistant more than just a basic

command runner is that it also uses some AI. So, if you ask

something it doesn’t recognize directly, it can still try to figure

out what you mean and give a helpful response. It also saves

reminders and other user data so that nothing is lost when you

close the program.

The project is built with future improvements in mind

— we kept it flexible so we can add more features later or

even make it work on other platforms. Overall, it’s a small but

solid example of how voice assistants can be used to make

computer tasks feel a bit easier and more natural.

II. LITERATURE SURVEY

Doing a proper literature survey is one of the most

important early steps in any software development project.

Before starting development, it's essential for us to consider

key factors like how much time the project might take, the

overall budget, and the available technical resources. Once

those basics are clear, the next decision usually comes down to

picking the right operating system and programming language

based on what best suits the project’s goals.

In the context of this projecta voice-based virtual

assistantwe explored a range of studies and papers to better

understand the current landscape of technologies and their

practical applications.

[1] A 2021 review by Kumar, Hossain, and others provides

a solid overview of how popular voice assistants like Siri,

Alexa, and Google Assistant work behind the scenes. The

paper goes into detail about key technologies such as

Automatic Speech Recognition (ASR), Natural Language

Processing (NLP), and Text-to-Speech (TTS), which all work

together to allow these systems to understand human speech

and respond appropriately. They also cover real-world

applications, especially in areas like healthcare, education, and

IJSART - Volume 11 Issue 4 – APRIL 2025 ISSN [ONLINE]: 2395-1052

Page | 1225 www.ijsart.com

smart homes. Some of the major challenges pointed out

include dealing with different accents, ensuring privacy, and

handling a wide range of languages. The study emphasizes the

need for more context-aware systems and better energy

efficiency to make these tools more effective and widely

usable.

[2] Another 2021 paper titled Voice Assistants for

Education: A Case Study takes a closer look at how assistants

like Google Assistant, Alexa, and Cortana are being used in

educational settings. It talks about how these tools help both

teachers and students—for example, by running quizzes,

offering mock tests, managing schedules, and giving quick

access to study materials. They’ve even been helpful in areas

like language and music learning. That said, the paper also

points out some issues, like how voice assistants sometimes

misinterpret what’s being asked, and concerns about

accessibility for people who aren’t fluent in English or those

with limited access to tech.

[3] In The Role of Natural Language Processing in Voice

Assistants, Arora and Verma (2021) dig deeper into how

NLP is used to help these assistants actually understand what

users are saying. They explain how machine learning helps

improve accuracy over time, with some systems reaching over

95% recognition accuracy. The paper also covers some of the

newer technologies being used, like BERT and GPT, which

improve understanding even further—especially when it

comes to dealing with multiple languages or emotional tones

in speech. Ethical concerns like data privacy and bias in

algorithms are also highlighted, showing that technical

progress needs to be matched with responsible use of data.

[4] Accessibility is a big topic in tech, and a 2022 paper by

Gupta and Mahajan titled Accessibility and Inclusivity in

Voice Assistant Design really highlights its importance. The

authors discuss how voice assistants can help people with

disabilities—like enabling hands-free control for people with

mobility challenges or helping visually impaired users with

information access and communication tools like speech-to-

text. Despite their potential, there are still gaps—such as

inconsistent speech recognition and lack of unified standards

across devices. The paper calls for better AI models and

stricter data protection to make these tools more inclusive and

trustworthy.

Based on the findings from these studies, it's clear

that building a voice-based assistant for desktops is both

technically feasible and increasingly relevant, especially with

how much progress has been made in NLP and speech

technologies. Choosing Python as the development language

made the most sense for this project, mainly because it

supports a wide range of libraries related to voice and AI.

Windows was selected as the platform due to its popularity

and ease of integration with desktop applications.

III. METHODOLOGY

For our group project, we’ve designed a modular

voice assistant that combines face authentication and hot word

detection, all while running efficiently using parallel

processing. The system has two primary components: main.py

and run.py.The main.py script handles the core functionalities

of the assistant. It sets up the graphical user interface (GUI)

using the eel library and launches a local web interface

(index.html) for the user to interact with. When authentication

is successful, the assistant greets the user and grants access,

while a failure in authentication prompts a notification to the

user. On the other hand, the run.py script is responsible for

managing the system processes. We’ve used Python’s

multiprocessing library to run the voice assistant (startJarvis())

and the hot word detection process (listenHotword())

concurrently. This allows the system to listen for activation

commands while still performing other tasks at the same time.

To ensure everything runs smoothly, we’ve implemented

process lifecycle management. T (index.html) for user

interaction. Successful authentication triggers UI feedback,

greets the user, and provides access to the assistant, while

authentication failure notifies the user accordingly. The run.py

script manages system processes, using Python's

multiprocessing library to concurrently run the of Voice-Based

Virtual Assistant for Windows assistant (startJarvis()) and the

hot word detection process (listenHotword()), implemented

via the engine.features.hotword module. This parallel

execution ensures the system can listen for activation

commands while performing other tasks. The code also

handles processlifecycle management, using join() and

terminate() to ensure proper cleanup, especially terminating

the hotword detection process if the assistant stops. This

integrated approach not only automates and streamlines

attendance tracking but also empowers educators and

administrators to make informed decisions through

comprehensive data analytics.

Development of Voice-Based Virtual Assistant for

Windows

The diagram illustrates the operational workflow of a

virtual voice based assistant for windows recognition

attendance system integrated with a National Language

Processing.

• Actors

IJSART - Volume 11 Issue 4 – APRIL 2025 ISSN [ONLINE]: 2395-1052

Page | 1226 www.ijsart.com

User: The primary actor who interacts with the voice assistant.

The user initiates commands and requests functionalities.

• Voice Assistant System: This represents the entire system

that processes user commands and provides responses. It

encapsulates various functionalities that can be accessed by

the user.

• Use Cases: The diagram includes several key use cases that

represent specific actions or functionalities available to the

user.

• Activate Assistant: This use case represents the action of

activating the voice assistant, typically by saying a wake word

Give Voice Command: After activation, the assistant can

process various commands, such as opening programs,

Incorporating these key elements, we’ve created a voice

assistant that’s not only reliable but also flexible enough to

adapt to new features in the future. Our goal is to make it a

valuable tool for streamlining tasks in an intuitive, user-

friendly way.

IV. SNAPSHOTS

V. CONCLUSION

To wrap things up, this voice assistant project, built

with Python smarts and a friendly face, really hits the sweet

spot for making everyday tasks a breeze. It's got that handy

voice recognition, takes care of those little chores

automatically, and looks good doing it with its modern

design.But what truly sets it apart is how it treats your

personal information. By keeping everything local, right here

on your computer, it gives you a real sense of security and

privacysomething that's hard to come by with those cloud-

based assistants. It's more than just a tool; it's a dependable

helper that can jog your memory, pull up websites without you

lifting a finger, and even have a natural-sounding chat.The

way it's designed is also pretty clever. It's also built to be

reliable and easy to get along with, so you won't find yourself

wrestling with complicated menus or errors.

REFERENCES

[1] Girish Kumar, Hanumanta Dh, Dilshad Ahmad, and

Hinge Sai Kiran explored how voice-based virtual

assistants can interact with users through speech to carry

out common tasks, aiming to improve accessibility and

convenience.

[2] Srikanth Thirumani, Srija Reddy Korem, and Abhiram

Dontha focused on building a virtual assistant specifically

for Windows. Their work highlights how speech

recognition can be used to make daily computer use more

efficient and productive.

[3] Ashvini Khobragade, Rupali Mamale, Pranay Lohabare,

and Shashank Mankar worked on designing a virtual

assistant for desktop systems. Their research looks into

IJSART - Volume 11 Issue 4 – APRIL 2025 ISSN [ONLINE]: 2395-1052

Page | 1227 www.ijsart.com

making these assistants smarter and more helpful by using

voice commands and user-friendly interfaces.

