
IJSART - Volume 10 Issue 4 – APRIL 2024 ISSN [ONLINE]: 2395-1052

Page | 107 www.ijsart.com

Double Guard Detecting Intrusion Multi-Tier In Web

Application

Rajeshwari.P1, Swetha.A2
1, 2 Dept of Software System

1, 2 Sri Krishna Arts and Science College

Abstract- One of the challenges facing computer systems is

resisting attack and compromise in a networked environment.

Today’s computing environment is fairly homogeneous, due to

a relatively small number of operating systems and

application functions running on the vast majority of

computers. This environment allows attackers to focus their

efforts on the few types of systems deployed. Once an exploit is

found, the exploit is effective against a very large number of

systems running the same software. The large number of

attack methods available on hacker Web sites demonstrates

the ease with which attackers can exploit this homogeneous

environment. This paper examines several widespread

computer attacks to understand the effect of diversity on

maintaining the integrity, and hence survivability, of

information systems

Keywords- Double guard, Multi-Tier web application, SQL

Injection, Security

I. INTRODUCTION

 In the contemporary digital landscape, safeguarding

web applications stands as an imperative for organizations

amidst the pervasive threat of cyberattacks. Multi-tier web

applications, distinguished by their layered structure

encompassing presentation, application logic, and data storage

tiers, are particularly vulnerable to a spectrum of attacks due

to their intricate architecture. To effectively fortify against

such threats, organizations implement a multi-faceted security

paradigm, with intrusion detection systems (IDS) assuming a

pivotal role.

IDSs scrutinize network and system activities to

identify malevolent behavior or deviations from established

policies, alerting administrators or taking preemptive measures

to repel attacks. Within the realm of multi-tier web

applications, IDS integration emerges as a cornerstone defense

mechanism against an array of threats, encompassing SQL

injection, cross-site scripting (XSS), and distributed denial-of-

service (DDoS) attacks.

Yet, conventional IDS setups may encounter

constraints in accurately discerning and mitigating

sophisticated attacks, particularly within dynamic and rapidly

evolving threat landscapes. Enter the concept of double guard

intrusion detection, wherein two complementary IDS systems

are deployed each focusing on distinct security facets and

employing disparate detection methodologies.

By amalgamating diverse IDS solutions,

organizations augment their threat detection prowess,

curtailing the probability of false positives and negatives. For

instance, while one IDS specializes in signature-based

detection—identifying known attack patterns—the other may

leverage anomaly- based detection to pinpoint deviations from

normal behavior.

This symbiosis between disparate approaches

furnishes a more exhaustive and resilient defense against both

recognized and unidentified threats. Furthermore, double

guard intrusion detection empowers organizations with

heightened adaptability and resilience against the ever-

evolving threat panorama.

In this exposition, we will delve into the intricacies of

multi-tier web application architecture and the operational

dynamics of double guard intrusion detection, elucidating its

pivotal role in bolstering organizational security postures

amidst the contemporary digital milieu. Through a blend of

meticulous analysis and pragmatic illustrations, our objective

is to endow readers with the insights and acumen requisite for

safeguarding web applications against malicious incursions,

ensuring the sanctity and confidentiality of their data.

II. PROBLEM STATEMENT

EXISTING SYSTEM

This traditional model has shown vulnerabilities to

data injection attacks. Our strategy involves the development

of a dual- memory framework, which categorically divides the

storage of code and data into separate spaces. Through this

architectural innovation, any malicious code that is injected

into the data compartment is effectively neutralized. This is

because our system is designed to execute commands solely

from the dedicated code compartment, preventing the

IJSART - Volume 10 Issue 4 – APRIL 2024 ISSN [ONLINE]: 2395-1052

Page | 108 www.ijsart.com

execution of any unauthorized code that might be inserted into

the data space. This dual-memory approach aims to offer a

robust defense against data injection threats, ensuring a safer

computing environment by leveraging the division of memory

spaces to enhance system security.

PROPOSED SYSTEM

This project outlines a novel system design aimed at

enhancing security through the implementation of a dual-

memory architecture. Traditional systems, which store

executable code and data within a single memory space, are

vulnerable to data injection attacks.

Our methodology introduces a concept of partitioned

virtual memory, distinctly allocating code and data into

separate segments. In the event of a data injection attack, the

infiltrated malicious code, now residing in the data segment, is

rendered ineffective. This is due to our system's design

principle, which dictates that only the code segment is

accessed for executing instructions, effectively isolating and

neutralizing any malicious code injected into the data segment.

Through this approach, the project seeks to fortify system

defenses against data injection vulnerabilities by leveraging

the separation of memory spaces for code and data.

III. METHODLOGY

Firewalls: Utilize firewalls to control incoming and outgoing

traffic, employing stateful inspection for active connection

monitoring and prevention of unauthorized access.

Intrusion Detection System (IDS): Deploy IDS to monitor

network traffic for anomalies or suspicious patterns, using

signature-based or behavior-based detection methods.

Virtual Private Network (VPN): Encourage VPN usage,

especially for remote access, to encrypt data transmission and

enhance overall network security.

Application-level Security:

Web Application Firewall (WAF): Implement WAF

to protect against common web-based attacks like SQL

injection, XSS, and CSRF, while also offering logging and

monitoring functionalities.

Secure Coding Practices: Emphasize secure coding practices

such as input validation, output encoding, and parameterized

queries to mitigate vulnerabilities within the application code.

Regular Security Audits: Conduct routine security audits and

penetration testing to identify and remediate application

vulnerabilities.

Logging and Monitoring:

Centralized Logging: Set up centralized logging to aggregate

logs from all application tiers, facilitating regular analysis for

detection of suspicious activities.

Real-time Monitoring: Employ real-time monitoring

solutions for anomaly detection, user behavior analytics, and

SIEM tools to promptly identify and respond to security

incidents.

Access Control and Authentication:

Role-based Access Control (RBAC): Implement RBAC to

enforce least privilege access and restrict user permissions

based on their roles.

Strong Authentication: Utilize strong authentication

mechanisms like multi-factor authentication (MFA) to verify

user identities and prevent unauthorized access. Incident

Response Plan:

Develop and maintain an incident response plan

outlining procedures for identifying, responding to, and

mitigating security incidents effectively.

Conduct regular exercises and simulations to test the

incident response plan and ensure personnel readiness during

security incidents.

This comprehensive approach integrates network and

application security measures to create a robust defense

against intrusions in a multi-tier web application environment.

IV. RELATED WORK

Detecting intrusions in a multi-tier web application

involves implementing robust security measures, with double-

guard strategies being particularly effective. These strategies

typically encompass various types of intrusion detection

systems (IDS) and mechanisms to fortify the application's

defense. Below are some related works and types of double-

guard approaches used in detecting intrusions in multi-tier

web applications:

Network-Based IDS (NIDS) and Host-Based IDS (HIDS):

NIDS monitors network traffic for suspicious activities such

as port scans or unusual data patterns, while HIDS focuses on

individual hosts, analyzing system logs and configurations for

IJSART - Volume 10 Issue 4 – APRIL 2024 ISSN [ONLINE]: 2395-1052

Page | 109 www.ijsart.com

signs of intrusion. Integrating both NIDS and HIDS provides a

comprehensive view of potential threats across the network

and application layers.

Anomaly Detection Systems: These systems establish a

baseline of normal behavior and flag any deviations as

potential intrusions. Techniques such as machine learning

algorithms can be employed to continually refine the baseline

and adapt to evolving threats, enhancing the accuracy of

anomaly

Signature-Based Detection: Signature- based compare

incoming data packets or system activities against a database

of know attack signatures. While effective against recognized

threats, they may struggle with detecting novel or zero-day

attacks. Complementing signature-based detection with

behavior-based techniques improves the system's ability to

identify emerging threats.

Application Layer Firewalls: Deploying firewalls at the

application layer adds an additional layer of defense by

inspecting and filtering HTTP/HTTPS traffic based on

predefined rules. Combined with intrusion detection

mechanisms, application layer firewalls can thwart attacks

targeting specific web application vulnerabilities.

Log Analysis and Correlation: Analyzing logs generated by

various components within the multi-tier architecture enables

the detection of suspicious patterns or sequences of events

indicative of an intrusion. Correlating logs from different

layers enhances the accuracy of intrusion detection and aids in

incident response.

Real-time Monitoring and Response: Utilizing real-time

monitoring tools allows for immediate detection and response

to potential intrusions. Automated response mechanisms, such

as blocking suspicious IP addresses or triggering alerts for

further investigation, bolster the overall security posture of the

web application.

By integrating these double-guard strategies and leveraging

advanced detection techniques,

V. SYSTEM ARCHITECTURE

ATTACKSCENARIOS

PRIVILEGE ESCALATION ATTACK

A privilege escalation attack is a network intrusion

tactic exploiting programming errors or design weaknesses to

grant unauthorized users elevated access to network resources,

including sensitive data and applications.

This type of attack typically occurs 6h5 their existing

privileges to assume the identity of another user with

comparable access levels, thereby gaining additional

privileges. For instance, accessing another user's online

banking account would exemplify horizontal privilege

escalation. During such attacks, the aim is to access user

accounts and associated data, potentially leading to further

compromise and unauthorized actions within the network

(Fig.1.Privileges escalation attack)

Privilege escalation attacks aim to exploit security

flaws and vulnerabilities, enabling unauthorized access to

networks, applications, and vital systems. These attacks come

in two forms: vertical, where an intruder gains entry into an

account to act as the user, and horizontal, where access to

limited-permission accounts is obtained and privileges are

escalated, typically to an administrator role, to carry out

specific actions.

SQL INJECTION ATTACK

SQL injection represents a significant security flaw,

enabling attackers to manipulate the database queries an

application executes. This vulnerability can expose or alter

data not intended for unauthorized access, including other

users' information or sensitive internal data. In extreme cases,

attackers can leverage this vulnerability to disrupt or take

control of the underlying systems or execute denial-of- service

attacks

A successful SQL injection exploit can lead to the

disclosure of confidential information, such as user

credentials, financial details, or personal data. This breach of

security has been at the heart of numerous major data leaks,

tarnishing the reputation of affected organizations and

incurring legal penalties. Furthermore, attackers might secure

IJSART - Volume 10 Issue 4 – APRIL 2024 ISSN [ONLINE]: 2395-1052

Page | 110 www.ijsart.com

a lasting foothold within an organization’s network, allowing

them to persist undetected for long periods extending

(Fig.2.SQL injection attack)

DNS REQUEST ATTACK

DNS filtering involves leveraging the Domain Name

System to block access to malicious sites and filter out content

deemed harmful or unsuitable, thus securing company data

and controlling employee access on corporate networks. This

method is a critical component of broader access control

measures.

The Domain Name System (DNS) is pivotal for

translating human-friendly domain names (e.g.,

cloudflare.com) into numerical IP addresses (e.g., 192.0.2.24),

making it easier for users to navigate the internet without

memorizing complex number sequences, similar to how phone

contacts replace the need to remember everyone's number.

Accessing a website or web application begins with

the device's search for the correct IP address through these

steps:

The user inputs a domain name into their browser,

prompting the device to initiate a DNS query, which it sends

to a DNS resolver. The DNS resolver corresponding IP

address by querying other DNS servers or referring to its

cache. After identifying the matching IP address, the DNS

resolver informs the user's device, a process known as

"resolving" the domain. With the IP address received, the

user's device connects to the server located at that address,

starting the content loading process.

(Fig.3.DNS request attack)

DNS cache poisoning occurs when a malicious actor

intercepts and responds to a DNS query with false

information. This false information is then stored in the DNS

resolver's cache for future use. It's worth noting that many

DNS resolvers operate as caching resolvers, meaning they

store DNS information temporarily to speed up subsequent

queries and reduce network traffic. When a legitimate user

subsequently requests the same domain name, the poisoned

cache provides the false information, leading the user to a

malicious website or server instead of the intended destination.

This can result in various security risks, including phishing

attacks, data theft, and malware distribution

VI. CONCLUSION

We presented an intrusion detection system that

builds models of normal behavior for multitier web

applications from both front- end web (HTTP) requests and

back-end database (SQL) queries. Unlike previous approaches

that correlated or summarized alerts generated by independent

IDSs, Double Guard forms a container-based IDS with

multiple input streams to produce alerts. We have shown that

such correlation of input streams provides a better

characterization of the system for anomaly detection because

the intrusion sensor has a more precise normality model that

detects a wider range of threats. We achieved this by isolating

the flow of information from each web server session with a

lightweight virtualization. Furthermore, we quantified the

detection to the back-end file system and database queries. For

static websites, we built a well-correlated model, which our

experiments proved to be effective at detecting different types

of attacks. Moreover, we showed that this held true dynamic

requests where both retrieval of information and updates to the

back-end database occur using the web server front end. When

we deployed our prototype system that employed Internet

Information Services web server, a blog application, and a

MSSQL backend, DoubleGuard was able to identify a wide

range of attacks with minimal false positives. As expected, the

number of false positives depended on the size and coverage

IJSART - Volume 10 Issue 4 – APRIL 2024 ISSN [ONLINE]: 2395-1052

Page | 111 www.ijsart.com

of the training sessions we used. Finally, for dynamic web

applications, we reduced the false positives.

REFERENCES

[1] http://www.sans.org/top-cyber-security-risks/.

[2] http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-

2010-4332.

[3] http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-

2010-4333.

[4] autobench. http://www.xenoclast.org/autobench/.

[5] Common vulnerabilities and exposures.

http://www.cve.mitre.org/.

[6] Five common web application vulnerabilities.

http://www.symantec. com/connect/articles/five-common-

web-application-vulnerabilities.

[7] greensql. http://www.greensql.net/.

[8] C. Anley. Advanced sql injection in sql server

applications. Technical report, Next Generation Security

Software, Ltd, 2002.

[9] K. Bai, H. Wang, and P. Liu. Towards database firewalls.

In DBSec2005.

[10] B. I. A. Barry and H. A. Chan. Syntax, and semantics-

based signature database for hybrid intrusion detection

systems. Security and Communication Networks, 2(6),

http://www.symantec/

